Metamath Proof Explorer


Theorem ennum

Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion ennum ( 𝐴𝐵 → ( 𝐴 ∈ dom card ↔ 𝐵 ∈ dom card ) )

Proof

Step Hyp Ref Expression
1 enen2 ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 rexbidv ( 𝐴𝐵 → ( ∃ 𝑥 ∈ On 𝑥𝐴 ↔ ∃ 𝑥 ∈ On 𝑥𝐵 ) )
3 isnum2 ( 𝐴 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥𝐴 )
4 isnum2 ( 𝐵 ∈ dom card ↔ ∃ 𝑥 ∈ On 𝑥𝐵 )
5 2 3 4 3bitr4g ( 𝐴𝐵 → ( 𝐴 ∈ dom card ↔ 𝐵 ∈ dom card ) )