Description: Trichotomy of dominance. This theorem is equivalent to the Axiom of Choice. Part of Proposition 4.42(d) of Mendelson p. 275. (Contributed by NM, 4-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | entri3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entri2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≺ 𝐴 ) ) | |
| 2 | sdomdom | ⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 3 | 2 | orim2i | ⊢ ( ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |
| 4 | 1 3 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴 ) ) |