Metamath Proof Explorer


Theorem eqif

Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005)

Ref Expression
Assertion eqif ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑𝐴 = 𝐵 ) ∨ ( ¬ 𝜑𝐴 = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eqeq2 ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐵 → ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴 = 𝐵 ) )
2 eqeq2 ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐶 → ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴 = 𝐶 ) )
3 1 2 elimif ( 𝐴 = if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑𝐴 = 𝐵 ) ∨ ( ¬ 𝜑𝐴 = 𝐶 ) ) )