Step |
Hyp |
Ref |
Expression |
1 |
|
erngset.h-r |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
erngset.t-r |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
erngset.e-r |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
erngset.d-r |
⊢ 𝐷 = ( ( EDRingR ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
erng.p-r |
⊢ + = ( +g ‘ 𝐷 ) |
6 |
1 2 3 4 5
|
erngplus-rN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ) → ( 𝑈 + 𝑉 ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) ) ) |
7 |
6
|
3adantr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( 𝑈 + 𝑉 ) = ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑈 ‘ 𝑓 ) = ( 𝑈 ‘ 𝐹 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑉 ‘ 𝑓 ) = ( 𝑉 ‘ 𝐹 ) ) |
10 |
8 9
|
coeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑉 ‘ 𝑓 ) ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |
12 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
13 |
|
fvex |
⊢ ( 𝑈 ‘ 𝐹 ) ∈ V |
14 |
|
fvex |
⊢ ( 𝑉 ‘ 𝐹 ) ∈ V |
15 |
13 14
|
coex |
⊢ ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∈ V |
16 |
15
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ∈ V ) |
17 |
7 11 12 16
|
fvmptd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ) → ( ( 𝑈 + 𝑉 ) ‘ 𝐹 ) = ( ( 𝑈 ‘ 𝐹 ) ∘ ( 𝑉 ‘ 𝐹 ) ) ) |