Metamath Proof Explorer


Theorem euanv

Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Assertion euanv ( ∃! 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 euex ( ∃! 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )
2 simpl ( ( 𝜑𝜓 ) → 𝜑 )
3 2 exlimiv ( ∃ 𝑥 ( 𝜑𝜓 ) → 𝜑 )
4 1 3 syl ( ∃! 𝑥 ( 𝜑𝜓 ) → 𝜑 )
5 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
6 5 eubidv ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝜑𝜓 ) ) )
7 6 biimprcd ( ∃! 𝑥 ( 𝜑𝜓 ) → ( 𝜑 → ∃! 𝑥 𝜓 ) )
8 4 7 jcai ( ∃! 𝑥 ( 𝜑𝜓 ) → ( 𝜑 ∧ ∃! 𝑥 𝜓 ) )
9 6 biimpa ( ( 𝜑 ∧ ∃! 𝑥 𝜓 ) → ∃! 𝑥 ( 𝜑𝜓 ) )
10 8 9 impbii ( ∃! 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 𝜓 ) )