Metamath Proof Explorer


Theorem euanv

Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Assertion euanv ∃!xφψφ∃!xψ

Proof

Step Hyp Ref Expression
1 euex ∃!xφψxφψ
2 simpl φψφ
3 2 exlimiv xφψφ
4 1 3 syl ∃!xφψφ
5 ibar φψφψ
6 5 eubidv φ∃!xψ∃!xφψ
7 6 biimprcd ∃!xφψφ∃!xψ
8 4 7 jcai ∃!xφψφ∃!xψ
9 6 biimpa φ∃!xψ∃!xφψ
10 8 9 impbii ∃!xφψφ∃!xψ