Metamath Proof Explorer


Theorem ex-br

Description: Example for df-br . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-br ( 𝑅 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → 3 𝑅 9 )

Proof

Step Hyp Ref Expression
1 opex ⟨ 3 , 9 ⟩ ∈ V
2 1 prid2 ⟨ 3 , 9 ⟩ ∈ { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ }
3 id ( 𝑅 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → 𝑅 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } )
4 2 3 eleqtrrid ( 𝑅 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → ⟨ 3 , 9 ⟩ ∈ 𝑅 )
5 df-br ( 3 𝑅 9 ↔ ⟨ 3 , 9 ⟩ ∈ 𝑅 )
6 4 5 sylibr ( 𝑅 = { ⟨ 2 , 6 ⟩ , ⟨ 3 , 9 ⟩ } → 3 𝑅 9 )