Step |
Hyp |
Ref |
Expression |
1 |
|
3cn |
⊢ 3 ∈ ℂ |
2 |
|
4cn |
⊢ 4 ∈ ℂ |
3 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
4 |
1
|
elexi |
⊢ 3 ∈ V |
5 |
2
|
elexi |
⊢ 4 ∈ V |
6 |
|
eleq1 |
⊢ ( 𝑥 = 3 → ( 𝑥 ∈ ℂ ↔ 3 ∈ ℂ ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 3 → ( 𝑥 + 1 ) = ( 3 + 1 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 3 → ( ( 𝑥 + 1 ) = 𝑦 ↔ ( 3 + 1 ) = 𝑦 ) ) |
9 |
6 8
|
3anbi13d |
⊢ ( 𝑥 = 3 → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) ↔ ( 3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 3 + 1 ) = 𝑦 ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑦 = 4 → ( 𝑦 ∈ ℂ ↔ 4 ∈ ℂ ) ) |
11 |
|
eqeq2 |
⊢ ( 𝑦 = 4 → ( ( 3 + 1 ) = 𝑦 ↔ ( 3 + 1 ) = 4 ) ) |
12 |
10 11
|
3anbi23d |
⊢ ( 𝑦 = 4 → ( ( 3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 3 + 1 ) = 𝑦 ) ↔ ( 3 ∈ ℂ ∧ 4 ∈ ℂ ∧ ( 3 + 1 ) = 4 ) ) ) |
13 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } |
14 |
4 5 9 12 13
|
brab |
⊢ ( 3 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } 4 ↔ ( 3 ∈ ℂ ∧ 4 ∈ ℂ ∧ ( 3 + 1 ) = 4 ) ) |
15 |
1 2 3 14
|
mpbir3an |
⊢ 3 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } 4 |
16 |
|
breq |
⊢ ( 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } → ( 3 𝑅 4 ↔ 3 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } 4 ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ ( 𝑥 + 1 ) = 𝑦 ) } → 3 𝑅 4 ) |