| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 2 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 3 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 4 | 1 | elexi | ⊢ 3  ∈  V | 
						
							| 5 | 2 | elexi | ⊢ 4  ∈  V | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑥  =  3  →  ( 𝑥  ∈  ℂ  ↔  3  ∈  ℂ ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑥  =  3  →  ( 𝑥  +  1 )  =  ( 3  +  1 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑥  =  3  →  ( ( 𝑥  +  1 )  =  𝑦  ↔  ( 3  +  1 )  =  𝑦 ) ) | 
						
							| 9 | 6 8 | 3anbi13d | ⊢ ( 𝑥  =  3  →  ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 )  ↔  ( 3  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 3  +  1 )  =  𝑦 ) ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑦  =  4  →  ( 𝑦  ∈  ℂ  ↔  4  ∈  ℂ ) ) | 
						
							| 11 |  | eqeq2 | ⊢ ( 𝑦  =  4  →  ( ( 3  +  1 )  =  𝑦  ↔  ( 3  +  1 )  =  4 ) ) | 
						
							| 12 | 10 11 | 3anbi23d | ⊢ ( 𝑦  =  4  →  ( ( 3  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 3  +  1 )  =  𝑦 )  ↔  ( 3  ∈  ℂ  ∧  4  ∈  ℂ  ∧  ( 3  +  1 )  =  4 ) ) ) | 
						
							| 13 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) } | 
						
							| 14 | 4 5 9 12 13 | brab | ⊢ ( 3 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) } 4  ↔  ( 3  ∈  ℂ  ∧  4  ∈  ℂ  ∧  ( 3  +  1 )  =  4 ) ) | 
						
							| 15 | 1 2 3 14 | mpbir3an | ⊢ 3 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) } 4 | 
						
							| 16 |  | breq | ⊢ ( 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) }  →  ( 3 𝑅 4  ↔  3 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) } 4 ) ) | 
						
							| 17 | 15 16 | mpbiri | ⊢ ( 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  ( 𝑥  +  1 )  =  𝑦 ) }  →  3 𝑅 4 ) |