Step |
Hyp |
Ref |
Expression |
1 |
|
3cn |
|- 3 e. CC |
2 |
|
4cn |
|- 4 e. CC |
3 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
4 |
1
|
elexi |
|- 3 e. _V |
5 |
2
|
elexi |
|- 4 e. _V |
6 |
|
eleq1 |
|- ( x = 3 -> ( x e. CC <-> 3 e. CC ) ) |
7 |
|
oveq1 |
|- ( x = 3 -> ( x + 1 ) = ( 3 + 1 ) ) |
8 |
7
|
eqeq1d |
|- ( x = 3 -> ( ( x + 1 ) = y <-> ( 3 + 1 ) = y ) ) |
9 |
6 8
|
3anbi13d |
|- ( x = 3 -> ( ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) <-> ( 3 e. CC /\ y e. CC /\ ( 3 + 1 ) = y ) ) ) |
10 |
|
eleq1 |
|- ( y = 4 -> ( y e. CC <-> 4 e. CC ) ) |
11 |
|
eqeq2 |
|- ( y = 4 -> ( ( 3 + 1 ) = y <-> ( 3 + 1 ) = 4 ) ) |
12 |
10 11
|
3anbi23d |
|- ( y = 4 -> ( ( 3 e. CC /\ y e. CC /\ ( 3 + 1 ) = y ) <-> ( 3 e. CC /\ 4 e. CC /\ ( 3 + 1 ) = 4 ) ) ) |
13 |
|
eqid |
|- { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } |
14 |
4 5 9 12 13
|
brab |
|- ( 3 { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } 4 <-> ( 3 e. CC /\ 4 e. CC /\ ( 3 + 1 ) = 4 ) ) |
15 |
1 2 3 14
|
mpbir3an |
|- 3 { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } 4 |
16 |
|
breq |
|- ( R = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } -> ( 3 R 4 <-> 3 { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } 4 ) ) |
17 |
15 16
|
mpbiri |
|- ( R = { <. x , y >. | ( x e. CC /\ y e. CC /\ ( x + 1 ) = y ) } -> 3 R 4 ) |