Metamath Proof Explorer


Theorem ex-sqrt

Description: Example for df-sqrt . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-sqrt ( √ ‘ 2 5 ) = 5

Proof

Step Hyp Ref Expression
1 ex-exp ( ( 5 ↑ 2 ) = 2 5 ∧ ( - 3 ↑ - 2 ) = ( 1 / 9 ) )
2 1 simpli ( 5 ↑ 2 ) = 2 5
3 2 fveq2i ( √ ‘ ( 5 ↑ 2 ) ) = ( √ ‘ 2 5 )
4 5re 5 ∈ ℝ
5 0re 0 ∈ ℝ
6 5pos 0 < 5
7 5 4 6 ltleii 0 ≤ 5
8 sqrtsq ( ( 5 ∈ ℝ ∧ 0 ≤ 5 ) → ( √ ‘ ( 5 ↑ 2 ) ) = 5 )
9 4 7 8 mp2an ( √ ‘ ( 5 ↑ 2 ) ) = 5
10 3 9 eqtr3i ( √ ‘ 2 5 ) = 5