Metamath Proof Explorer


Theorem ex-abs

Description: Example for df-abs . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-abs ( abs ‘ - 2 ) = 2

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 1 absnegi ( abs ‘ - 2 ) = ( abs ‘ 2 )
3 2re 2 ∈ ℝ
4 0le2 0 ≤ 2
5 absid ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 )
6 3 4 5 mp2an ( abs ‘ 2 ) = 2
7 2 6 eqtri ( abs ‘ - 2 ) = 2