Metamath Proof Explorer


Theorem ex-abs

Description: Example for df-abs . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-abs
|- ( abs ` -u 2 ) = 2

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 1 absnegi
 |-  ( abs ` -u 2 ) = ( abs ` 2 )
3 2re
 |-  2 e. RR
4 0le2
 |-  0 <_ 2
5 absid
 |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 )
6 3 4 5 mp2an
 |-  ( abs ` 2 ) = 2
7 2 6 eqtri
 |-  ( abs ` -u 2 ) = 2