Description: Expand U. A C_ B to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | expanduniss | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) | |
2 | dfss2 | ⊢ ( 𝑥 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) | |
3 | 2 | expandral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
4 | 1 3 | bitri | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |