| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							logcl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							efexp | 
							⊢ ( ( ( log ‘ 𝐴 )  ∈  ℂ  ∧  𝑁  ∈  ℤ )  →  ( exp ‘ ( 𝑁  ·  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							stoic3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( exp ‘ ( 𝑁  ·  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eflog | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant3 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq1d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 )  =  ( 𝐴 ↑ 𝑁 ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtr2d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 𝑁 )  =  ( exp ‘ ( 𝑁  ·  ( log ‘ 𝐴 ) ) ) )  |