Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑚 = 0s → ( 𝐴 ↑s 𝑚 ) = ( 𝐴 ↑s 0s ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑚 = 0s → ( ( 𝐴 ↑s 𝑚 ) ∈ No ↔ ( 𝐴 ↑s 0s ) ∈ No ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑚 = 0s → ( ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑚 ) ∈ No ) ↔ ( 𝐴 ∈ No → ( 𝐴 ↑s 0s ) ∈ No ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ↑s 𝑚 ) = ( 𝐴 ↑s 𝑛 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ↑s 𝑚 ) ∈ No ↔ ( 𝐴 ↑s 𝑛 ) ∈ No ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑚 ) ∈ No ) ↔ ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑛 ) ∈ No ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 𝐴 ↑s 𝑚 ) = ( 𝐴 ↑s ( 𝑛 +s 1s ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 ↑s 𝑚 ) ∈ No ↔ ( 𝐴 ↑s ( 𝑛 +s 1s ) ) ∈ No ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑚 ) ∈ No ) ↔ ( 𝐴 ∈ No → ( 𝐴 ↑s ( 𝑛 +s 1s ) ) ∈ No ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐴 ↑s 𝑚 ) = ( 𝐴 ↑s 𝑁 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ↑s 𝑚 ) ∈ No ↔ ( 𝐴 ↑s 𝑁 ) ∈ No ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑚 ) ∈ No ) ↔ ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑁 ) ∈ No ) ) ) |
13 |
|
exps0 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ↑s 0s ) = 1s ) |
14 |
|
1sno |
⊢ 1s ∈ No |
15 |
13 14
|
eqeltrdi |
⊢ ( 𝐴 ∈ No → ( 𝐴 ↑s 0s ) ∈ No ) |
16 |
|
simp2 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ No ∧ ( 𝐴 ↑s 𝑛 ) ∈ No ) → 𝐴 ∈ No ) |
17 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ No ∧ ( 𝐴 ↑s 𝑛 ) ∈ No ) → 𝑛 ∈ ℕ0s ) |
18 |
|
expsp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕ0s ) → ( 𝐴 ↑s ( 𝑛 +s 1s ) ) = ( ( 𝐴 ↑s 𝑛 ) ·s 𝐴 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ No ∧ ( 𝐴 ↑s 𝑛 ) ∈ No ) → ( 𝐴 ↑s ( 𝑛 +s 1s ) ) = ( ( 𝐴 ↑s 𝑛 ) ·s 𝐴 ) ) |
20 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ No ∧ ( 𝐴 ↑s 𝑛 ) ∈ No ) → ( 𝐴 ↑s 𝑛 ) ∈ No ) |
21 |
20 16
|
mulscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ No ∧ ( 𝐴 ↑s 𝑛 ) ∈ No ) → ( ( 𝐴 ↑s 𝑛 ) ·s 𝐴 ) ∈ No ) |
22 |
19 21
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝐴 ∈ No ∧ ( 𝐴 ↑s 𝑛 ) ∈ No ) → ( 𝐴 ↑s ( 𝑛 +s 1s ) ) ∈ No ) |
23 |
22
|
3exp |
⊢ ( 𝑛 ∈ ℕ0s → ( 𝐴 ∈ No → ( ( 𝐴 ↑s 𝑛 ) ∈ No → ( 𝐴 ↑s ( 𝑛 +s 1s ) ) ∈ No ) ) ) |
24 |
23
|
a2d |
⊢ ( 𝑛 ∈ ℕ0s → ( ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑛 ) ∈ No ) → ( 𝐴 ∈ No → ( 𝐴 ↑s ( 𝑛 +s 1s ) ) ∈ No ) ) ) |
25 |
3 6 9 12 15 24
|
n0sind |
⊢ ( 𝑁 ∈ ℕ0s → ( 𝐴 ∈ No → ( 𝐴 ↑s 𝑁 ) ∈ No ) ) |
26 |
25
|
impcom |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ No ) |