Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ No ⊆ No | |
| 2 | mulscl | ⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( 𝑥 ·s 𝑦 ) ∈ No ) | |
| 3 | 1sno | ⊢ 1s ∈ No | |
| 4 | 1 2 3 | expscllem | ⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s 𝑁 ) ∈ No ) |