Metamath Proof Explorer


Theorem expscl

Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025)

Ref Expression
Assertion expscl ( ( 𝐴 No 𝑁 ∈ ℕ0s ) → ( 𝐴s 𝑁 ) ∈ No )

Proof

Step Hyp Ref Expression
1 ssid No No
2 mulscl ( ( 𝑥 No 𝑦 No ) → ( 𝑥 ·s 𝑦 ) ∈ No )
3 1sno 1s No
4 1 2 3 expscllem ( ( 𝐴 No 𝑁 ∈ ℕ0s ) → ( 𝐴s 𝑁 ) ∈ No )