Metamath Proof Explorer


Theorem expscl

Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025)

Ref Expression
Assertion expscl
|- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No )

Proof

Step Hyp Ref Expression
1 ssid
 |-  No C_ No
2 mulscl
 |-  ( ( x e. No /\ y e. No ) -> ( x x.s y ) e. No )
3 1sno
 |-  1s e. No
4 1 2 3 expscllem
 |-  ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No )