Description: Closure law for surreal exponentiation. (Contributed by Scott Fenton, 7-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expscl | |- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- No C_ No |
|
| 2 | mulscl | |- ( ( x e. No /\ y e. No ) -> ( x x.s y ) e. No ) |
|
| 3 | 1sno | |- 1s e. No |
|
| 4 | 1 2 3 | expscllem | |- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) |