Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( m = 0s -> ( A ^su m ) = ( A ^su 0s ) ) |
2 |
1
|
eleq1d |
|- ( m = 0s -> ( ( A ^su m ) e. No <-> ( A ^su 0s ) e. No ) ) |
3 |
2
|
imbi2d |
|- ( m = 0s -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su 0s ) e. No ) ) ) |
4 |
|
oveq2 |
|- ( m = n -> ( A ^su m ) = ( A ^su n ) ) |
5 |
4
|
eleq1d |
|- ( m = n -> ( ( A ^su m ) e. No <-> ( A ^su n ) e. No ) ) |
6 |
5
|
imbi2d |
|- ( m = n -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su n ) e. No ) ) ) |
7 |
|
oveq2 |
|- ( m = ( n +s 1s ) -> ( A ^su m ) = ( A ^su ( n +s 1s ) ) ) |
8 |
7
|
eleq1d |
|- ( m = ( n +s 1s ) -> ( ( A ^su m ) e. No <-> ( A ^su ( n +s 1s ) ) e. No ) ) |
9 |
8
|
imbi2d |
|- ( m = ( n +s 1s ) -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su ( n +s 1s ) ) e. No ) ) ) |
10 |
|
oveq2 |
|- ( m = N -> ( A ^su m ) = ( A ^su N ) ) |
11 |
10
|
eleq1d |
|- ( m = N -> ( ( A ^su m ) e. No <-> ( A ^su N ) e. No ) ) |
12 |
11
|
imbi2d |
|- ( m = N -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su N ) e. No ) ) ) |
13 |
|
exps0 |
|- ( A e. No -> ( A ^su 0s ) = 1s ) |
14 |
|
1sno |
|- 1s e. No |
15 |
13 14
|
eqeltrdi |
|- ( A e. No -> ( A ^su 0s ) e. No ) |
16 |
|
simp2 |
|- ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> A e. No ) |
17 |
|
simp1 |
|- ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> n e. NN0_s ) |
18 |
|
expsp1 |
|- ( ( A e. No /\ n e. NN0_s ) -> ( A ^su ( n +s 1s ) ) = ( ( A ^su n ) x.s A ) ) |
19 |
16 17 18
|
syl2anc |
|- ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( A ^su ( n +s 1s ) ) = ( ( A ^su n ) x.s A ) ) |
20 |
|
simp3 |
|- ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( A ^su n ) e. No ) |
21 |
20 16
|
mulscld |
|- ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( ( A ^su n ) x.s A ) e. No ) |
22 |
19 21
|
eqeltrd |
|- ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( A ^su ( n +s 1s ) ) e. No ) |
23 |
22
|
3exp |
|- ( n e. NN0_s -> ( A e. No -> ( ( A ^su n ) e. No -> ( A ^su ( n +s 1s ) ) e. No ) ) ) |
24 |
23
|
a2d |
|- ( n e. NN0_s -> ( ( A e. No -> ( A ^su n ) e. No ) -> ( A e. No -> ( A ^su ( n +s 1s ) ) e. No ) ) ) |
25 |
3 6 9 12 15 24
|
n0sind |
|- ( N e. NN0_s -> ( A e. No -> ( A ^su N ) e. No ) ) |
26 |
25
|
impcom |
|- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) |