| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( m = 0s -> ( A ^su m ) = ( A ^su 0s ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( m = 0s -> ( ( A ^su m ) e. No <-> ( A ^su 0s ) e. No ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( m = 0s -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su 0s ) e. No ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( m = n -> ( A ^su m ) = ( A ^su n ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( m = n -> ( ( A ^su m ) e. No <-> ( A ^su n ) e. No ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( m = n -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su n ) e. No ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( m = ( n +s 1s ) -> ( A ^su m ) = ( A ^su ( n +s 1s ) ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( m = ( n +s 1s ) -> ( ( A ^su m ) e. No <-> ( A ^su ( n +s 1s ) ) e. No ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( m = ( n +s 1s ) -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su ( n +s 1s ) ) e. No ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( m = N -> ( A ^su m ) = ( A ^su N ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( m = N -> ( ( A ^su m ) e. No <-> ( A ^su N ) e. No ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( m = N -> ( ( A e. No -> ( A ^su m ) e. No ) <-> ( A e. No -> ( A ^su N ) e. No ) ) ) | 
						
							| 13 |  | exps0 |  |-  ( A e. No -> ( A ^su 0s ) = 1s ) | 
						
							| 14 |  | 1sno |  |-  1s e. No | 
						
							| 15 | 13 14 | eqeltrdi |  |-  ( A e. No -> ( A ^su 0s ) e. No ) | 
						
							| 16 |  | simp2 |  |-  ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> A e. No ) | 
						
							| 17 |  | simp1 |  |-  ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> n e. NN0_s ) | 
						
							| 18 |  | expsp1 |  |-  ( ( A e. No /\ n e. NN0_s ) -> ( A ^su ( n +s 1s ) ) = ( ( A ^su n ) x.s A ) ) | 
						
							| 19 | 16 17 18 | syl2anc |  |-  ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( A ^su ( n +s 1s ) ) = ( ( A ^su n ) x.s A ) ) | 
						
							| 20 |  | simp3 |  |-  ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( A ^su n ) e. No ) | 
						
							| 21 | 20 16 | mulscld |  |-  ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( ( A ^su n ) x.s A ) e. No ) | 
						
							| 22 | 19 21 | eqeltrd |  |-  ( ( n e. NN0_s /\ A e. No /\ ( A ^su n ) e. No ) -> ( A ^su ( n +s 1s ) ) e. No ) | 
						
							| 23 | 22 | 3exp |  |-  ( n e. NN0_s -> ( A e. No -> ( ( A ^su n ) e. No -> ( A ^su ( n +s 1s ) ) e. No ) ) ) | 
						
							| 24 | 23 | a2d |  |-  ( n e. NN0_s -> ( ( A e. No -> ( A ^su n ) e. No ) -> ( A e. No -> ( A ^su ( n +s 1s ) ) e. No ) ) ) | 
						
							| 25 | 3 6 9 12 15 24 | n0sind |  |-  ( N e. NN0_s -> ( A e. No -> ( A ^su N ) e. No ) ) | 
						
							| 26 | 25 | impcom |  |-  ( ( A e. No /\ N e. NN0_s ) -> ( A ^su N ) e. No ) |