Metamath Proof Explorer


Theorem expscllem

Description: Lemma for proving non-negative surreal integer exponentiation closure. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses expscllem.1
|- F C_ No
expscllem.2
|- ( ( x e. F /\ y e. F ) -> ( x x.s y ) e. F )
expscllem.3
|- 1s e. F
Assertion expscllem
|- ( ( A e. F /\ N e. NN0_s ) -> ( A ^su N ) e. F )

Proof

Step Hyp Ref Expression
1 expscllem.1
 |-  F C_ No
2 expscllem.2
 |-  ( ( x e. F /\ y e. F ) -> ( x x.s y ) e. F )
3 expscllem.3
 |-  1s e. F
4 oveq2
 |-  ( m = 0s -> ( A ^su m ) = ( A ^su 0s ) )
5 4 eleq1d
 |-  ( m = 0s -> ( ( A ^su m ) e. F <-> ( A ^su 0s ) e. F ) )
6 5 imbi2d
 |-  ( m = 0s -> ( ( A e. F -> ( A ^su m ) e. F ) <-> ( A e. F -> ( A ^su 0s ) e. F ) ) )
7 oveq2
 |-  ( m = n -> ( A ^su m ) = ( A ^su n ) )
8 7 eleq1d
 |-  ( m = n -> ( ( A ^su m ) e. F <-> ( A ^su n ) e. F ) )
9 8 imbi2d
 |-  ( m = n -> ( ( A e. F -> ( A ^su m ) e. F ) <-> ( A e. F -> ( A ^su n ) e. F ) ) )
10 oveq2
 |-  ( m = ( n +s 1s ) -> ( A ^su m ) = ( A ^su ( n +s 1s ) ) )
11 10 eleq1d
 |-  ( m = ( n +s 1s ) -> ( ( A ^su m ) e. F <-> ( A ^su ( n +s 1s ) ) e. F ) )
12 11 imbi2d
 |-  ( m = ( n +s 1s ) -> ( ( A e. F -> ( A ^su m ) e. F ) <-> ( A e. F -> ( A ^su ( n +s 1s ) ) e. F ) ) )
13 oveq2
 |-  ( m = N -> ( A ^su m ) = ( A ^su N ) )
14 13 eleq1d
 |-  ( m = N -> ( ( A ^su m ) e. F <-> ( A ^su N ) e. F ) )
15 14 imbi2d
 |-  ( m = N -> ( ( A e. F -> ( A ^su m ) e. F ) <-> ( A e. F -> ( A ^su N ) e. F ) ) )
16 1 sseli
 |-  ( A e. F -> A e. No )
17 exps0
 |-  ( A e. No -> ( A ^su 0s ) = 1s )
18 16 17 syl
 |-  ( A e. F -> ( A ^su 0s ) = 1s )
19 18 3 eqeltrdi
 |-  ( A e. F -> ( A ^su 0s ) e. F )
20 16 3ad2ant2
 |-  ( ( n e. NN0_s /\ A e. F /\ ( A ^su n ) e. F ) -> A e. No )
21 simp1
 |-  ( ( n e. NN0_s /\ A e. F /\ ( A ^su n ) e. F ) -> n e. NN0_s )
22 expsp1
 |-  ( ( A e. No /\ n e. NN0_s ) -> ( A ^su ( n +s 1s ) ) = ( ( A ^su n ) x.s A ) )
23 20 21 22 syl2anc
 |-  ( ( n e. NN0_s /\ A e. F /\ ( A ^su n ) e. F ) -> ( A ^su ( n +s 1s ) ) = ( ( A ^su n ) x.s A ) )
24 2 caovcl
 |-  ( ( ( A ^su n ) e. F /\ A e. F ) -> ( ( A ^su n ) x.s A ) e. F )
25 24 ancoms
 |-  ( ( A e. F /\ ( A ^su n ) e. F ) -> ( ( A ^su n ) x.s A ) e. F )
26 25 3adant1
 |-  ( ( n e. NN0_s /\ A e. F /\ ( A ^su n ) e. F ) -> ( ( A ^su n ) x.s A ) e. F )
27 23 26 eqeltrd
 |-  ( ( n e. NN0_s /\ A e. F /\ ( A ^su n ) e. F ) -> ( A ^su ( n +s 1s ) ) e. F )
28 27 3exp
 |-  ( n e. NN0_s -> ( A e. F -> ( ( A ^su n ) e. F -> ( A ^su ( n +s 1s ) ) e. F ) ) )
29 28 a2d
 |-  ( n e. NN0_s -> ( ( A e. F -> ( A ^su n ) e. F ) -> ( A e. F -> ( A ^su ( n +s 1s ) ) e. F ) ) )
30 6 9 12 15 19 29 n0sind
 |-  ( N e. NN0_s -> ( A e. F -> ( A ^su N ) e. F ) )
31 30 impcom
 |-  ( ( A e. F /\ N e. NN0_s ) -> ( A ^su N ) e. F )