Step |
Hyp |
Ref |
Expression |
1 |
|
eln0s |
|- ( N e. NN0_s <-> ( N e. NN_s \/ N = 0s ) ) |
2 |
|
1sno |
|- 1s e. No |
3 |
2
|
a1i |
|- ( ( A e. No /\ N e. NN_s ) -> 1s e. No ) |
4 |
|
dfnns2 |
|- NN_s = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) |
5 |
4
|
a1i |
|- ( ( A e. No /\ N e. NN_s ) -> NN_s = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) |
6 |
|
simpr |
|- ( ( A e. No /\ N e. NN_s ) -> N e. NN_s ) |
7 |
3 5 6
|
seqsp1 |
|- ( ( A e. No /\ N e. NN_s ) -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s ( ( NN_s X. { A } ) ` ( N +s 1s ) ) ) ) |
8 |
|
peano2nns |
|- ( N e. NN_s -> ( N +s 1s ) e. NN_s ) |
9 |
|
fvconst2g |
|- ( ( A e. No /\ ( N +s 1s ) e. NN_s ) -> ( ( NN_s X. { A } ) ` ( N +s 1s ) ) = A ) |
10 |
8 9
|
sylan2 |
|- ( ( A e. No /\ N e. NN_s ) -> ( ( NN_s X. { A } ) ` ( N +s 1s ) ) = A ) |
11 |
10
|
oveq2d |
|- ( ( A e. No /\ N e. NN_s ) -> ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s ( ( NN_s X. { A } ) ` ( N +s 1s ) ) ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s A ) ) |
12 |
7 11
|
eqtrd |
|- ( ( A e. No /\ N e. NN_s ) -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s A ) ) |
13 |
|
expsnnval |
|- ( ( A e. No /\ ( N +s 1s ) e. NN_s ) -> ( A ^su ( N +s 1s ) ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) ) |
14 |
8 13
|
sylan2 |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su ( N +s 1s ) ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) ) |
15 |
|
expsnnval |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) ) |
16 |
15
|
oveq1d |
|- ( ( A e. No /\ N e. NN_s ) -> ( ( A ^su N ) x.s A ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s A ) ) |
17 |
12 14 16
|
3eqtr4d |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) |
18 |
|
mulslid |
|- ( A e. No -> ( 1s x.s A ) = A ) |
19 |
18
|
adantr |
|- ( ( A e. No /\ N = 0s ) -> ( 1s x.s A ) = A ) |
20 |
|
oveq2 |
|- ( N = 0s -> ( A ^su N ) = ( A ^su 0s ) ) |
21 |
|
exps0 |
|- ( A e. No -> ( A ^su 0s ) = 1s ) |
22 |
20 21
|
sylan9eqr |
|- ( ( A e. No /\ N = 0s ) -> ( A ^su N ) = 1s ) |
23 |
22
|
oveq1d |
|- ( ( A e. No /\ N = 0s ) -> ( ( A ^su N ) x.s A ) = ( 1s x.s A ) ) |
24 |
|
oveq1 |
|- ( N = 0s -> ( N +s 1s ) = ( 0s +s 1s ) ) |
25 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
26 |
2 25
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
27 |
24 26
|
eqtrdi |
|- ( N = 0s -> ( N +s 1s ) = 1s ) |
28 |
27
|
oveq2d |
|- ( N = 0s -> ( A ^su ( N +s 1s ) ) = ( A ^su 1s ) ) |
29 |
|
exps1 |
|- ( A e. No -> ( A ^su 1s ) = A ) |
30 |
28 29
|
sylan9eqr |
|- ( ( A e. No /\ N = 0s ) -> ( A ^su ( N +s 1s ) ) = A ) |
31 |
19 23 30
|
3eqtr4rd |
|- ( ( A e. No /\ N = 0s ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) |
32 |
17 31
|
jaodan |
|- ( ( A e. No /\ ( N e. NN_s \/ N = 0s ) ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) |
33 |
1 32
|
sylan2b |
|- ( ( A e. No /\ N e. NN0_s ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) |