| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eln0s |  |-  ( N e. NN0_s <-> ( N e. NN_s \/ N = 0s ) ) | 
						
							| 2 |  | 1sno |  |-  1s e. No | 
						
							| 3 | 2 | a1i |  |-  ( ( A e. No /\ N e. NN_s ) -> 1s e. No ) | 
						
							| 4 |  | dfnns2 |  |-  NN_s = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) | 
						
							| 5 | 4 | a1i |  |-  ( ( A e. No /\ N e. NN_s ) -> NN_s = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , 1s ) " _om ) ) | 
						
							| 6 |  | simpr |  |-  ( ( A e. No /\ N e. NN_s ) -> N e. NN_s ) | 
						
							| 7 | 3 5 6 | seqsp1 |  |-  ( ( A e. No /\ N e. NN_s ) -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s ( ( NN_s X. { A } ) ` ( N +s 1s ) ) ) ) | 
						
							| 8 |  | peano2nns |  |-  ( N e. NN_s -> ( N +s 1s ) e. NN_s ) | 
						
							| 9 |  | fvconst2g |  |-  ( ( A e. No /\ ( N +s 1s ) e. NN_s ) -> ( ( NN_s X. { A } ) ` ( N +s 1s ) ) = A ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( A e. No /\ N e. NN_s ) -> ( ( NN_s X. { A } ) ` ( N +s 1s ) ) = A ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( A e. No /\ N e. NN_s ) -> ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s ( ( NN_s X. { A } ) ` ( N +s 1s ) ) ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s A ) ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ( A e. No /\ N e. NN_s ) -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s A ) ) | 
						
							| 13 |  | expsnnval |  |-  ( ( A e. No /\ ( N +s 1s ) e. NN_s ) -> ( A ^su ( N +s 1s ) ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) ) | 
						
							| 14 | 8 13 | sylan2 |  |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su ( N +s 1s ) ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( N +s 1s ) ) ) | 
						
							| 15 |  | expsnnval |  |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( A e. No /\ N e. NN_s ) -> ( ( A ^su N ) x.s A ) = ( ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) x.s A ) ) | 
						
							| 17 | 12 14 16 | 3eqtr4d |  |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) | 
						
							| 18 |  | mulslid |  |-  ( A e. No -> ( 1s x.s A ) = A ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. No /\ N = 0s ) -> ( 1s x.s A ) = A ) | 
						
							| 20 |  | oveq2 |  |-  ( N = 0s -> ( A ^su N ) = ( A ^su 0s ) ) | 
						
							| 21 |  | exps0 |  |-  ( A e. No -> ( A ^su 0s ) = 1s ) | 
						
							| 22 | 20 21 | sylan9eqr |  |-  ( ( A e. No /\ N = 0s ) -> ( A ^su N ) = 1s ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ( A e. No /\ N = 0s ) -> ( ( A ^su N ) x.s A ) = ( 1s x.s A ) ) | 
						
							| 24 |  | oveq1 |  |-  ( N = 0s -> ( N +s 1s ) = ( 0s +s 1s ) ) | 
						
							| 25 |  | addslid |  |-  ( 1s e. No -> ( 0s +s 1s ) = 1s ) | 
						
							| 26 | 2 25 | ax-mp |  |-  ( 0s +s 1s ) = 1s | 
						
							| 27 | 24 26 | eqtrdi |  |-  ( N = 0s -> ( N +s 1s ) = 1s ) | 
						
							| 28 | 27 | oveq2d |  |-  ( N = 0s -> ( A ^su ( N +s 1s ) ) = ( A ^su 1s ) ) | 
						
							| 29 |  | exps1 |  |-  ( A e. No -> ( A ^su 1s ) = A ) | 
						
							| 30 | 28 29 | sylan9eqr |  |-  ( ( A e. No /\ N = 0s ) -> ( A ^su ( N +s 1s ) ) = A ) | 
						
							| 31 | 19 23 30 | 3eqtr4rd |  |-  ( ( A e. No /\ N = 0s ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) | 
						
							| 32 | 17 31 | jaodan |  |-  ( ( A e. No /\ ( N e. NN_s \/ N = 0s ) ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) | 
						
							| 33 | 1 32 | sylan2b |  |-  ( ( A e. No /\ N e. NN0_s ) -> ( A ^su ( N +s 1s ) ) = ( ( A ^su N ) x.s A ) ) |