Metamath Proof Explorer


Theorem expsp1

Description: Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025)

Ref Expression
Assertion expsp1 ( ( 𝐴 No 𝑁 ∈ ℕ0s ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( ( 𝐴s 𝑁 ) ·s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eln0s ( 𝑁 ∈ ℕ0s ↔ ( 𝑁 ∈ ℕs𝑁 = 0s ) )
2 1sno 1s No
3 2 a1i ( ( 𝐴 No 𝑁 ∈ ℕs ) → 1s No )
4 dfnns2 s = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω )
5 4 a1i ( ( 𝐴 No 𝑁 ∈ ℕs ) → ℕs = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) )
6 simpr ( ( 𝐴 No 𝑁 ∈ ℕs ) → 𝑁 ∈ ℕs )
7 3 5 6 seqsp1 ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) ) )
8 peano2nns ( 𝑁 ∈ ℕs → ( 𝑁 +s 1s ) ∈ ℕs )
9 fvconst2g ( ( 𝐴 No ∧ ( 𝑁 +s 1s ) ∈ ℕs ) → ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) = 𝐴 )
10 8 9 sylan2 ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) = 𝐴 )
11 10 oveq2d ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s 𝐴 ) )
12 7 11 eqtrd ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s 𝐴 ) )
13 expsnnval ( ( 𝐴 No ∧ ( 𝑁 +s 1s ) ∈ ℕs ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) )
14 8 13 sylan2 ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) )
15 expsnnval ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( 𝐴s 𝑁 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) )
16 15 oveq1d ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( ( 𝐴s 𝑁 ) ·s 𝐴 ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s 𝐴 ) )
17 12 14 16 3eqtr4d ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( ( 𝐴s 𝑁 ) ·s 𝐴 ) )
18 mulslid ( 𝐴 No → ( 1s ·s 𝐴 ) = 𝐴 )
19 18 adantr ( ( 𝐴 No 𝑁 = 0s ) → ( 1s ·s 𝐴 ) = 𝐴 )
20 oveq2 ( 𝑁 = 0s → ( 𝐴s 𝑁 ) = ( 𝐴s 0s ) )
21 exps0 ( 𝐴 No → ( 𝐴s 0s ) = 1s )
22 20 21 sylan9eqr ( ( 𝐴 No 𝑁 = 0s ) → ( 𝐴s 𝑁 ) = 1s )
23 22 oveq1d ( ( 𝐴 No 𝑁 = 0s ) → ( ( 𝐴s 𝑁 ) ·s 𝐴 ) = ( 1s ·s 𝐴 ) )
24 oveq1 ( 𝑁 = 0s → ( 𝑁 +s 1s ) = ( 0s +s 1s ) )
25 addslid ( 1s No → ( 0s +s 1s ) = 1s )
26 2 25 ax-mp ( 0s +s 1s ) = 1s
27 24 26 eqtrdi ( 𝑁 = 0s → ( 𝑁 +s 1s ) = 1s )
28 27 oveq2d ( 𝑁 = 0s → ( 𝐴s ( 𝑁 +s 1s ) ) = ( 𝐴s 1s ) )
29 exps1 ( 𝐴 No → ( 𝐴s 1s ) = 𝐴 )
30 28 29 sylan9eqr ( ( 𝐴 No 𝑁 = 0s ) → ( 𝐴s ( 𝑁 +s 1s ) ) = 𝐴 )
31 19 23 30 3eqtr4rd ( ( 𝐴 No 𝑁 = 0s ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( ( 𝐴s 𝑁 ) ·s 𝐴 ) )
32 17 31 jaodan ( ( 𝐴 No ∧ ( 𝑁 ∈ ℕs𝑁 = 0s ) ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( ( 𝐴s 𝑁 ) ·s 𝐴 ) )
33 1 32 sylan2b ( ( 𝐴 No 𝑁 ∈ ℕ0s ) → ( 𝐴s ( 𝑁 +s 1s ) ) = ( ( 𝐴s 𝑁 ) ·s 𝐴 ) )