Step |
Hyp |
Ref |
Expression |
1 |
|
eln0s |
⊢ ( 𝑁 ∈ ℕ0s ↔ ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ) |
2 |
|
1sno |
⊢ 1s ∈ No |
3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → 1s ∈ No ) |
4 |
|
dfnns2 |
⊢ ℕs = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) |
5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ℕs = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 +s 1s ) ) , 1s ) “ ω ) ) |
6 |
|
simpr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → 𝑁 ∈ ℕs ) |
7 |
3 5 6
|
seqsp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) ) ) |
8 |
|
peano2nns |
⊢ ( 𝑁 ∈ ℕs → ( 𝑁 +s 1s ) ∈ ℕs ) |
9 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑁 +s 1s ) ∈ ℕs ) → ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) = 𝐴 ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) = 𝐴 ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s ( ( ℕs × { 𝐴 } ) ‘ ( 𝑁 +s 1s ) ) ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s 𝐴 ) ) |
12 |
7 11
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s 𝐴 ) ) |
13 |
|
expsnnval |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑁 +s 1s ) ∈ ℕs ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) ) |
14 |
8 13
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( 𝑁 +s 1s ) ) ) |
15 |
|
expsnnval |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( 𝐴 ↑s 𝑁 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( ( 𝐴 ↑s 𝑁 ) ·s 𝐴 ) = ( ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ·s 𝐴 ) ) |
17 |
12 14 16
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( ( 𝐴 ↑s 𝑁 ) ·s 𝐴 ) ) |
18 |
|
mulslid |
⊢ ( 𝐴 ∈ No → ( 1s ·s 𝐴 ) = 𝐴 ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 = 0s ) → ( 1s ·s 𝐴 ) = 𝐴 ) |
20 |
|
oveq2 |
⊢ ( 𝑁 = 0s → ( 𝐴 ↑s 𝑁 ) = ( 𝐴 ↑s 0s ) ) |
21 |
|
exps0 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ↑s 0s ) = 1s ) |
22 |
20 21
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 = 0s ) → ( 𝐴 ↑s 𝑁 ) = 1s ) |
23 |
22
|
oveq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 = 0s ) → ( ( 𝐴 ↑s 𝑁 ) ·s 𝐴 ) = ( 1s ·s 𝐴 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑁 = 0s → ( 𝑁 +s 1s ) = ( 0s +s 1s ) ) |
25 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
26 |
2 25
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
27 |
24 26
|
eqtrdi |
⊢ ( 𝑁 = 0s → ( 𝑁 +s 1s ) = 1s ) |
28 |
27
|
oveq2d |
⊢ ( 𝑁 = 0s → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( 𝐴 ↑s 1s ) ) |
29 |
|
exps1 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ↑s 1s ) = 𝐴 ) |
30 |
28 29
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 = 0s ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = 𝐴 ) |
31 |
19 23 30
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 = 0s ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( ( 𝐴 ↑s 𝑁 ) ·s 𝐴 ) ) |
32 |
17 31
|
jaodan |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( ( 𝐴 ↑s 𝑁 ) ·s 𝐴 ) ) |
33 |
1 32
|
sylan2b |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 𝐴 ↑s ( 𝑁 +s 1s ) ) = ( ( 𝐴 ↑s 𝑁 ) ·s 𝐴 ) ) |