Metamath Proof Explorer


Theorem expsnnval

Description: Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion expsnnval ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( 𝐴s 𝑁 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nnzs ( 𝑁 ∈ ℕs𝑁 ∈ ℤs )
2 expsval ( ( 𝐴 No 𝑁 ∈ ℤs ) → ( 𝐴s 𝑁 ) = if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) ) )
3 1 2 sylan2 ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( 𝐴s 𝑁 ) = if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) ) )
4 nnne0s ( 𝑁 ∈ ℕs𝑁 ≠ 0s )
5 4 neneqd ( 𝑁 ∈ ℕs → ¬ 𝑁 = 0s )
6 5 iffalsed ( 𝑁 ∈ ℕs → if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) ) = if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) )
7 nnsgt0 ( 𝑁 ∈ ℕs → 0s <s 𝑁 )
8 7 iftrued ( 𝑁 ∈ ℕs → if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) )
9 6 8 eqtrd ( 𝑁 ∈ ℕs → if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) )
10 9 adantl ( ( 𝐴 No 𝑁 ∈ ℕs ) → if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us𝑁 ) ) ) ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) )
11 3 10 eqtrd ( ( 𝐴 No 𝑁 ∈ ℕs ) → ( 𝐴s 𝑁 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) )