Step |
Hyp |
Ref |
Expression |
1 |
|
nnzs |
⊢ ( 𝑁 ∈ ℕs → 𝑁 ∈ ℤs ) |
2 |
|
expsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℤs ) → ( 𝐴 ↑s 𝑁 ) = if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( 𝐴 ↑s 𝑁 ) = if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) ) ) |
4 |
|
nnne0s |
⊢ ( 𝑁 ∈ ℕs → 𝑁 ≠ 0s ) |
5 |
4
|
neneqd |
⊢ ( 𝑁 ∈ ℕs → ¬ 𝑁 = 0s ) |
6 |
5
|
iffalsed |
⊢ ( 𝑁 ∈ ℕs → if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) ) = if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) ) |
7 |
|
nnsgt0 |
⊢ ( 𝑁 ∈ ℕs → 0s <s 𝑁 ) |
8 |
7
|
iftrued |
⊢ ( 𝑁 ∈ ℕs → if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ) |
9 |
6 8
|
eqtrd |
⊢ ( 𝑁 ∈ ℕs → if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → if ( 𝑁 = 0s , 1s , if ( 0s <s 𝑁 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑁 ) ) ) ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ) |
11 |
3 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑁 ∈ ℕs ) → ( 𝐴 ↑s 𝑁 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑁 ) ) |