| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnzs | ⊢ ( 𝑁  ∈  ℕs  →  𝑁  ∈  ℤs ) | 
						
							| 2 |  | expsval | ⊢ ( ( 𝐴  ∈   No   ∧  𝑁  ∈  ℤs )  →  ( 𝐴 ↑s 𝑁 )  =  if ( 𝑁  =   0s  ,   1s  ,  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) ) ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝑁  ∈  ℕs )  →  ( 𝐴 ↑s 𝑁 )  =  if ( 𝑁  =   0s  ,   1s  ,  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) ) ) ) | 
						
							| 4 |  | nnne0s | ⊢ ( 𝑁  ∈  ℕs  →  𝑁  ≠   0s  ) | 
						
							| 5 | 4 | neneqd | ⊢ ( 𝑁  ∈  ℕs  →  ¬  𝑁  =   0s  ) | 
						
							| 6 | 5 | iffalsed | ⊢ ( 𝑁  ∈  ℕs  →  if ( 𝑁  =   0s  ,   1s  ,  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) ) )  =  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) ) ) | 
						
							| 7 |  | nnsgt0 | ⊢ ( 𝑁  ∈  ℕs  →   0s   <s  𝑁 ) | 
						
							| 8 | 7 | iftrued | ⊢ ( 𝑁  ∈  ℕs  →  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 9 | 6 8 | eqtrd | ⊢ ( 𝑁  ∈  ℕs  →  if ( 𝑁  =   0s  ,   1s  ,  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) ) )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑁  ∈  ℕs )  →  if ( 𝑁  =   0s  ,   1s  ,  if (  0s   <s  𝑁 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑁 ) ) ) ) )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 11 | 3 10 | eqtrd | ⊢ ( ( 𝐴  ∈   No   ∧  𝑁  ∈  ℕs )  →  ( 𝐴 ↑s 𝑁 )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) |