| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd | ⊢ ( 𝑥  =  𝐴  →   1s   =   1s  ) | 
						
							| 2 |  | eqidd | ⊢ ( 𝑥  =  𝐴  →   ·s   =   ·s  ) | 
						
							| 3 |  | sneq | ⊢ ( 𝑥  =  𝐴  →  { 𝑥 }  =  { 𝐴 } ) | 
						
							| 4 | 3 | xpeq2d | ⊢ ( 𝑥  =  𝐴  →  ( ℕs  ×  { 𝑥 } )  =  ( ℕs  ×  { 𝐴 } ) ) | 
						
							| 5 | 1 2 4 | seqseq123d | ⊢ ( 𝑥  =  𝐴  →  seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) )  =  seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( 𝑥  =  𝐴  →  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ 𝑦 )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑦 ) ) | 
						
							| 7 | 5 | fveq1d | ⊢ ( 𝑥  =  𝐴  →  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ (  -us  ‘ 𝑦 ) )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑥  =  𝐴  →  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ (  -us  ‘ 𝑦 ) ) )  =  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) ) | 
						
							| 9 | 6 8 | ifeq12d | ⊢ ( 𝑥  =  𝐴  →  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) )  =  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) ) ) | 
						
							| 10 | 9 | ifeq2d | ⊢ ( 𝑥  =  𝐴  →  if ( 𝑦  =   0s  ,   1s  ,  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) ) )  =  if ( 𝑦  =   0s  ,   1s  ,  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 11 |  | eqeq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =   0s   ↔  𝐵  =   0s  ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑦  =  𝐵  →  (  0s   <s  𝑦  ↔   0s   <s  𝐵 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑦  =  𝐵  →  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑦 )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 ) ) | 
						
							| 14 |  | 2fveq3 | ⊢ ( 𝑦  =  𝐵  →  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) )  =  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) ) | 
						
							| 16 | 12 13 15 | ifbieq12d | ⊢ ( 𝑦  =  𝐵  →  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) )  =  if (  0s   <s  𝐵 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) ) ) | 
						
							| 17 | 11 16 | ifbieq2d | ⊢ ( 𝑦  =  𝐵  →  if ( 𝑦  =   0s  ,   1s  ,  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) ) )  =  if ( 𝐵  =   0s  ,   1s  ,  if (  0s   <s  𝐵 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) ) ) ) | 
						
							| 18 |  | df-exps | ⊢ ↑s  =  ( 𝑥  ∈   No  ,  𝑦  ∈  ℤs  ↦  if ( 𝑦  =   0s  ,   1s  ,  if (  0s   <s  𝑦 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ 𝑦 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝑥 } ) ) ‘ (  -us  ‘ 𝑦 ) ) ) ) ) ) | 
						
							| 19 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 20 | 19 | elexi | ⊢  1s   ∈  V | 
						
							| 21 |  | fvex | ⊢ ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 )  ∈  V | 
						
							| 22 |  | ovex | ⊢ (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) )  ∈  V | 
						
							| 23 | 21 22 | ifex | ⊢ if (  0s   <s  𝐵 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) )  ∈  V | 
						
							| 24 | 20 23 | ifex | ⊢ if ( 𝐵  =   0s  ,   1s  ,  if (  0s   <s  𝐵 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) ) )  ∈  V | 
						
							| 25 | 10 17 18 24 | ovmpo | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈  ℤs )  →  ( 𝐴 ↑s 𝐵 )  =  if ( 𝐵  =   0s  ,   1s  ,  if (  0s   <s  𝐵 ,  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ 𝐵 ) ,  (  1s   /su  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘ (  -us  ‘ 𝐵 ) ) ) ) ) ) |