| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
⊢ ( 𝑥 = 𝐴 → 1s = 1s ) |
| 2 |
|
eqidd |
⊢ ( 𝑥 = 𝐴 → ·s = ·s ) |
| 3 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
| 4 |
3
|
xpeq2d |
⊢ ( 𝑥 = 𝐴 → ( ℕs × { 𝑥 } ) = ( ℕs × { 𝐴 } ) ) |
| 5 |
1 2 4
|
seqseq123d |
⊢ ( 𝑥 = 𝐴 → seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) = seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝑥 = 𝐴 → ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑦 ) ) |
| 7 |
5
|
fveq1d |
⊢ ( 𝑥 = 𝐴 → ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) = ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) |
| 9 |
6 8
|
ifeq12d |
⊢ ( 𝑥 = 𝐴 → if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) = if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) |
| 10 |
9
|
ifeq2d |
⊢ ( 𝑥 = 𝐴 → if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) = if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) ) |
| 11 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 0s ↔ 𝐵 = 0s ) ) |
| 12 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 0s <s 𝑦 ↔ 0s <s 𝐵 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑦 ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) ) |
| 14 |
|
2fveq3 |
⊢ ( 𝑦 = 𝐵 → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) = ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ) |
| 16 |
12 13 15
|
ifbieq12d |
⊢ ( 𝑦 = 𝐵 → if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) = if ( 0s <s 𝐵 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ) ) |
| 17 |
11 16
|
ifbieq2d |
⊢ ( 𝑦 = 𝐵 → if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) = if ( 𝐵 = 0s , 1s , if ( 0s <s 𝐵 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ) ) ) |
| 18 |
|
df-exps |
⊢ ↑s = ( 𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) ) |
| 19 |
|
1sno |
⊢ 1s ∈ No |
| 20 |
19
|
elexi |
⊢ 1s ∈ V |
| 21 |
|
fvex |
⊢ ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) ∈ V |
| 22 |
|
ovex |
⊢ ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ∈ V |
| 23 |
21 22
|
ifex |
⊢ if ( 0s <s 𝐵 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ) ∈ V |
| 24 |
20 23
|
ifex |
⊢ if ( 𝐵 = 0s , 1s , if ( 0s <s 𝐵 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ) ) ∈ V |
| 25 |
10 17 18 24
|
ovmpo |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ ℤs ) → ( 𝐴 ↑s 𝐵 ) = if ( 𝐵 = 0s , 1s , if ( 0s <s 𝐵 , ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 𝐵 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ ( -us ‘ 𝐵 ) ) ) ) ) ) |