Metamath Proof Explorer


Theorem expsval

Description: The value of surreal exponentiation. (Contributed by Scott Fenton, 24-Jul-2025)

Ref Expression
Assertion expsval Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. ZZ_s ) -> ( A ^su B ) = if ( B = 0s , 1s , if ( 0s

Proof

Step Hyp Ref Expression
1 eqidd x = A 1 s = 1 s
2 eqidd x = A s = s
3 sneq x = A x = A
4 3 xpeq2d x = A s × x = s × A
5 1 2 4 seqseq123d x = A seq s 1 s s s × x = seq s 1 s s s × A
6 5 fveq1d x = A seq s 1 s s s × x y = seq s 1 s s s × A y
7 5 fveq1d x = A seq s 1 s s s × x + s y = seq s 1 s s s × A + s y
8 7 oveq2d x = A 1 s / su seq s 1 s s s × x + s y = 1 s / su seq s 1 s s s × A + s y
9 6 8 ifeq12d x = A if 0 s < s y seq s 1 s s s × x y 1 s / su seq s 1 s s s × x + s y = if 0 s < s y seq s 1 s s s × A y 1 s / su seq s 1 s s s × A + s y
10 9 ifeq2d x = A if y = 0 s 1 s if 0 s < s y seq s 1 s s s × x y 1 s / su seq s 1 s s s × x + s y = if y = 0 s 1 s if 0 s < s y seq s 1 s s s × A y 1 s / su seq s 1 s s s × A + s y
11 eqeq1 y = B y = 0 s B = 0 s
12 breq2 y = B 0 s < s y 0 s < s B
13 fveq2 y = B seq s 1 s s s × A y = seq s 1 s s s × A B
14 2fveq3 y = B seq s 1 s s s × A + s y = seq s 1 s s s × A + s B
15 14 oveq2d y = B 1 s / su seq s 1 s s s × A + s y = 1 s / su seq s 1 s s s × A + s B
16 12 13 15 ifbieq12d y = B if 0 s < s y seq s 1 s s s × A y 1 s / su seq s 1 s s s × A + s y = if 0 s < s B seq s 1 s s s × A B 1 s / su seq s 1 s s s × A + s B
17 11 16 ifbieq2d y = B if y = 0 s 1 s if 0 s < s y seq s 1 s s s × A y 1 s / su seq s 1 s s s × A + s y = if B = 0 s 1 s if 0 s < s B seq s 1 s s s × A B 1 s / su seq s 1 s s s × A + s B
18 df-exps Could not format ^su = ( x e. No , y e. ZZ_s |-> if ( y = 0s , 1s , if ( 0s if ( y = 0s , 1s , if ( 0s
19 1sno 1 s No
20 19 elexi 1 s V
21 fvex seq s 1 s s s × A B V
22 ovex 1 s / su seq s 1 s s s × A + s B V
23 21 22 ifex if 0 s < s B seq s 1 s s s × A B 1 s / su seq s 1 s s s × A + s B V
24 20 23 ifex if B = 0 s 1 s if 0 s < s B seq s 1 s s s × A B 1 s / su seq s 1 s s s × A + s B V
25 10 17 18 24 ovmpo Could not format ( ( A e. No /\ B e. ZZ_s ) -> ( A ^su B ) = if ( B = 0s , 1s , if ( 0s ( A ^su B ) = if ( B = 0s , 1s , if ( 0s