Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|- ( x = A -> 1s = 1s ) |
2 |
|
eqidd |
|- ( x = A -> x.s = x.s ) |
3 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
4 |
3
|
xpeq2d |
|- ( x = A -> ( NN_s X. { x } ) = ( NN_s X. { A } ) ) |
5 |
1 2 4
|
seqseq123d |
|- ( x = A -> seq_s 1s ( x.s , ( NN_s X. { x } ) ) = seq_s 1s ( x.s , ( NN_s X. { A } ) ) ) |
6 |
5
|
fveq1d |
|- ( x = A -> ( seq_s 1s ( x.s , ( NN_s X. { x } ) ) ` y ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` y ) ) |
7 |
5
|
fveq1d |
|- ( x = A -> ( seq_s 1s ( x.s , ( NN_s X. { x } ) ) ` ( -us ` y ) ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` y ) ) ) |
8 |
7
|
oveq2d |
|- ( x = A -> ( 1s /su ( seq_s 1s ( x.s , ( NN_s X. { x } ) ) ` ( -us ` y ) ) ) = ( 1s /su ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` y ) ) ) ) |
9 |
6 8
|
ifeq12d |
|- ( x = A -> if ( 0s |
10 |
9
|
ifeq2d |
|- ( x = A -> if ( y = 0s , 1s , if ( 0s |
11 |
|
eqeq1 |
|- ( y = B -> ( y = 0s <-> B = 0s ) ) |
12 |
|
breq2 |
|- ( y = B -> ( 0s 0s |
13 |
|
fveq2 |
|- ( y = B -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` y ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` B ) ) |
14 |
|
2fveq3 |
|- ( y = B -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` y ) ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` B ) ) ) |
15 |
14
|
oveq2d |
|- ( y = B -> ( 1s /su ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` y ) ) ) = ( 1s /su ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` B ) ) ) ) |
16 |
12 13 15
|
ifbieq12d |
|- ( y = B -> if ( 0s |
17 |
11 16
|
ifbieq2d |
|- ( y = B -> if ( y = 0s , 1s , if ( 0s |
18 |
|
df-exps |
|- ^su = ( x e. No , y e. ZZ_s |-> if ( y = 0s , 1s , if ( 0s |
19 |
|
1sno |
|- 1s e. No |
20 |
19
|
elexi |
|- 1s e. _V |
21 |
|
fvex |
|- ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` B ) e. _V |
22 |
|
ovex |
|- ( 1s /su ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` ( -us ` B ) ) ) e. _V |
23 |
21 22
|
ifex |
|- if ( 0s |
24 |
20 23
|
ifex |
|- if ( B = 0s , 1s , if ( 0s |
25 |
10 17 18 24
|
ovmpo |
|- ( ( A e. No /\ B e. ZZ_s ) -> ( A ^su B ) = if ( B = 0s , 1s , if ( 0s |