Metamath Proof Explorer


Theorem expsnnval

Description: Value of surreal exponentiation at a natural number. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion expsnnval
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) )

Proof

Step Hyp Ref Expression
1 nnzs
 |-  ( N e. NN_s -> N e. ZZ_s )
2 expsval
 |-  ( ( A e. No /\ N e. ZZ_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s 
3 1 2 sylan2
 |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s 
4 nnne0s
 |-  ( N e. NN_s -> N =/= 0s )
5 4 neneqd
 |-  ( N e. NN_s -> -. N = 0s )
6 5 iffalsed
 |-  ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s 
7 nnsgt0
 |-  ( N e. NN_s -> 0s 
8 7 iftrued
 |-  ( N e. NN_s -> if ( 0s 
9 6 8 eqtrd
 |-  ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s 
10 9 adantl
 |-  ( ( A e. No /\ N e. NN_s ) -> if ( N = 0s , 1s , if ( 0s 
11 3 10 eqtrd
 |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) )