| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnzs |  |-  ( N e. NN_s -> N e. ZZ_s ) | 
						
							| 2 |  | expsval |  |-  ( ( A e. No /\ N e. ZZ_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s  | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s  | 
						
							| 4 |  | nnne0s |  |-  ( N e. NN_s -> N =/= 0s ) | 
						
							| 5 | 4 | neneqd |  |-  ( N e. NN_s -> -. N = 0s ) | 
						
							| 6 | 5 | iffalsed |  |-  ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s  | 
						
							| 7 |  | nnsgt0 |  |-  ( N e. NN_s -> 0s  | 
						
							| 8 | 7 | iftrued |  |-  ( N e. NN_s -> if ( 0s  | 
						
							| 9 | 6 8 | eqtrd |  |-  ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s  | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. No /\ N e. NN_s ) -> if ( N = 0s , 1s , if ( 0s  | 
						
							| 11 | 3 10 | eqtrd |  |-  ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) ) |