| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnzs |
|- ( N e. NN_s -> N e. ZZ_s ) |
| 2 |
|
expsval |
|- ( ( A e. No /\ N e. ZZ_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s |
| 3 |
1 2
|
sylan2 |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s |
| 4 |
|
nnne0s |
|- ( N e. NN_s -> N =/= 0s ) |
| 5 |
4
|
neneqd |
|- ( N e. NN_s -> -. N = 0s ) |
| 6 |
5
|
iffalsed |
|- ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s |
| 7 |
|
nnsgt0 |
|- ( N e. NN_s -> 0s |
| 8 |
7
|
iftrued |
|- ( N e. NN_s -> if ( 0s |
| 9 |
6 8
|
eqtrd |
|- ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s |
| 10 |
9
|
adantl |
|- ( ( A e. No /\ N e. NN_s ) -> if ( N = 0s , 1s , if ( 0s |
| 11 |
3 10
|
eqtrd |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) ) |