Step |
Hyp |
Ref |
Expression |
1 |
|
nnzs |
|- ( N e. NN_s -> N e. ZZ_s ) |
2 |
|
expsval |
|- ( ( A e. No /\ N e. ZZ_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s |
3 |
1 2
|
sylan2 |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = if ( N = 0s , 1s , if ( 0s |
4 |
|
nnne0s |
|- ( N e. NN_s -> N =/= 0s ) |
5 |
4
|
neneqd |
|- ( N e. NN_s -> -. N = 0s ) |
6 |
5
|
iffalsed |
|- ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s |
7 |
|
nnsgt0 |
|- ( N e. NN_s -> 0s |
8 |
7
|
iftrued |
|- ( N e. NN_s -> if ( 0s |
9 |
6 8
|
eqtrd |
|- ( N e. NN_s -> if ( N = 0s , 1s , if ( 0s |
10 |
9
|
adantl |
|- ( ( A e. No /\ N e. NN_s ) -> if ( N = 0s , 1s , if ( 0s |
11 |
3 10
|
eqtrd |
|- ( ( A e. No /\ N e. NN_s ) -> ( A ^su N ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` N ) ) |