Step |
Hyp |
Ref |
Expression |
1 |
|
1nns |
⊢ 1s ∈ ℕs |
2 |
|
expsnnval |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ ℕs ) → ( 𝐴 ↑s 1s ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 1s ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ↑s 1s ) = ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 1s ) ) |
4 |
|
1sno |
⊢ 1s ∈ No |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ No → 1s ∈ No ) |
6 |
5
|
seqs1 |
⊢ ( 𝐴 ∈ No → ( seqs 1s ( ·s , ( ℕs × { 𝐴 } ) ) ‘ 1s ) = ( ( ℕs × { 𝐴 } ) ‘ 1s ) ) |
7 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ ℕs ) → ( ( ℕs × { 𝐴 } ) ‘ 1s ) = 𝐴 ) |
8 |
1 7
|
mpan2 |
⊢ ( 𝐴 ∈ No → ( ( ℕs × { 𝐴 } ) ‘ 1s ) = 𝐴 ) |
9 |
3 6 8
|
3eqtrd |
⊢ ( 𝐴 ∈ No → ( 𝐴 ↑s 1s ) = 𝐴 ) |