| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nns | ⊢  1s   ∈  ℕs | 
						
							| 2 |  | expsnnval | ⊢ ( ( 𝐴  ∈   No   ∧   1s   ∈  ℕs )  →  ( 𝐴 ↑s  1s  )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘  1s  ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈   No   →  ( 𝐴 ↑s  1s  )  =  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘  1s  ) ) | 
						
							| 4 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈   No   →   1s   ∈   No  ) | 
						
							| 6 | 5 | seqs1 | ⊢ ( 𝐴  ∈   No   →  ( seqs  1s  (  ·s  ,  ( ℕs  ×  { 𝐴 } ) ) ‘  1s  )  =  ( ( ℕs  ×  { 𝐴 } ) ‘  1s  ) ) | 
						
							| 7 |  | fvconst2g | ⊢ ( ( 𝐴  ∈   No   ∧   1s   ∈  ℕs )  →  ( ( ℕs  ×  { 𝐴 } ) ‘  1s  )  =  𝐴 ) | 
						
							| 8 | 1 7 | mpan2 | ⊢ ( 𝐴  ∈   No   →  ( ( ℕs  ×  { 𝐴 } ) ‘  1s  )  =  𝐴 ) | 
						
							| 9 | 3 6 8 | 3eqtrd | ⊢ ( 𝐴  ∈   No   →  ( 𝐴 ↑s  1s  )  =  𝐴 ) |