Step |
Hyp |
Ref |
Expression |
1 |
|
1nns |
|- 1s e. NN_s |
2 |
|
expsnnval |
|- ( ( A e. No /\ 1s e. NN_s ) -> ( A ^su 1s ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` 1s ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. No -> ( A ^su 1s ) = ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` 1s ) ) |
4 |
|
1sno |
|- 1s e. No |
5 |
4
|
a1i |
|- ( A e. No -> 1s e. No ) |
6 |
5
|
seqs1 |
|- ( A e. No -> ( seq_s 1s ( x.s , ( NN_s X. { A } ) ) ` 1s ) = ( ( NN_s X. { A } ) ` 1s ) ) |
7 |
|
fvconst2g |
|- ( ( A e. No /\ 1s e. NN_s ) -> ( ( NN_s X. { A } ) ` 1s ) = A ) |
8 |
1 7
|
mpan2 |
|- ( A e. No -> ( ( NN_s X. { A } ) ` 1s ) = A ) |
9 |
3 6 8
|
3eqtrd |
|- ( A e. No -> ( A ^su 1s ) = A ) |