| Step |
Hyp |
Ref |
Expression |
| 1 |
|
notbi |
⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) |
| 2 |
|
disjsn |
⊢ ( ( dom ( 𝐹 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ) |
| 3 |
|
disj2 |
⊢ ( ( dom ( 𝐹 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 4 |
2 3
|
bitr3i |
⊢ ( ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 5 |
|
disjsn |
⊢ ( ( dom ( 𝐺 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) |
| 6 |
|
disj2 |
⊢ ( ( dom ( 𝐺 ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 7 |
5 6
|
bitr3i |
⊢ ( ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 8 |
4 7
|
bibi12i |
⊢ ( ( ¬ 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ¬ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 9 |
1 8
|
bitri |
⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 10 |
9
|
notbii |
⊢ ( ¬ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ¬ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 11 |
|
df-xor |
⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ¬ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) |
| 12 |
|
df-xor |
⊢ ( ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ↔ ¬ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 13 |
10 11 12
|
3bitr4i |
⊢ ( ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ↔ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) |
| 14 |
|
f1omvdco2 |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) → ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 15 |
|
disj2 |
⊢ ( ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 16 |
|
disjsn |
⊢ ( ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
| 17 |
15 16
|
bitr3i |
⊢ ( dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ↔ ¬ 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
| 18 |
17
|
con2bii |
⊢ ( 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ↔ ¬ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) |
| 19 |
14 18
|
sylibr |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( dom ( 𝐹 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ⊻ dom ( 𝐺 ∖ I ) ⊆ ( V ∖ { 𝑋 } ) ) ) → 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |
| 20 |
13 19
|
syl3an3b |
⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝐺 : 𝐴 –1-1-onto→ 𝐴 ∧ ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ⊻ 𝑋 ∈ dom ( 𝐺 ∖ I ) ) ) → 𝑋 ∈ dom ( ( 𝐹 ∘ 𝐺 ) ∖ I ) ) |