| Step | Hyp | Ref | Expression | 
						
							| 1 |  | notbi | ⊢ ( ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  𝑋  ∈  dom  ( 𝐺  ∖   I  ) )  ↔  ( ¬  𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  ¬  𝑋  ∈  dom  ( 𝐺  ∖   I  ) ) ) | 
						
							| 2 |  | disjsn | ⊢ ( ( dom  ( 𝐹  ∖   I  )  ∩  { 𝑋 } )  =  ∅  ↔  ¬  𝑋  ∈  dom  ( 𝐹  ∖   I  ) ) | 
						
							| 3 |  | disj2 | ⊢ ( ( dom  ( 𝐹  ∖   I  )  ∩  { 𝑋 } )  =  ∅  ↔  dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 4 | 2 3 | bitr3i | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 5 |  | disjsn | ⊢ ( ( dom  ( 𝐺  ∖   I  )  ∩  { 𝑋 } )  =  ∅  ↔  ¬  𝑋  ∈  dom  ( 𝐺  ∖   I  ) ) | 
						
							| 6 |  | disj2 | ⊢ ( ( dom  ( 𝐺  ∖   I  )  ∩  { 𝑋 } )  =  ∅  ↔  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 7 | 5 6 | bitr3i | ⊢ ( ¬  𝑋  ∈  dom  ( 𝐺  ∖   I  )  ↔  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 8 | 4 7 | bibi12i | ⊢ ( ( ¬  𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  ¬  𝑋  ∈  dom  ( 𝐺  ∖   I  ) )  ↔  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ↔  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 9 | 1 8 | bitri | ⊢ ( ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  𝑋  ∈  dom  ( 𝐺  ∖   I  ) )  ↔  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ↔  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 10 | 9 | notbii | ⊢ ( ¬  ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  𝑋  ∈  dom  ( 𝐺  ∖   I  ) )  ↔  ¬  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ↔  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 11 |  | df-xor | ⊢ ( ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ⊻  𝑋  ∈  dom  ( 𝐺  ∖   I  ) )  ↔  ¬  ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ↔  𝑋  ∈  dom  ( 𝐺  ∖   I  ) ) ) | 
						
							| 12 |  | df-xor | ⊢ ( ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ⊻  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) )  ↔  ¬  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ↔  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 13 | 10 11 12 | 3bitr4i | ⊢ ( ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ⊻  𝑋  ∈  dom  ( 𝐺  ∖   I  ) )  ↔  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ⊻  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) ) | 
						
							| 14 |  | f1omvdco2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴  ∧  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ⊻  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) )  →  ¬  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 15 |  | disj2 | ⊢ ( ( dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ∩  { 𝑋 } )  =  ∅  ↔  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 16 |  | disjsn | ⊢ ( ( dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ∩  { 𝑋 } )  =  ∅  ↔  ¬  𝑋  ∈  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  ) ) | 
						
							| 17 | 15 16 | bitr3i | ⊢ ( dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ↔  ¬  𝑋  ∈  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  ) ) | 
						
							| 18 | 17 | con2bii | ⊢ ( 𝑋  ∈  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ↔  ¬  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) | 
						
							| 19 | 14 18 | sylibr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴  ∧  ( dom  ( 𝐹  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } )  ⊻  dom  ( 𝐺  ∖   I  )  ⊆  ( V  ∖  { 𝑋 } ) ) )  →  𝑋  ∈  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  ) ) | 
						
							| 20 | 13 19 | syl3an3b | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐴  ∧  𝐺 : 𝐴 –1-1-onto→ 𝐴  ∧  ( 𝑋  ∈  dom  ( 𝐹  ∖   I  )  ⊻  𝑋  ∈  dom  ( 𝐺  ∖   I  ) ) )  →  𝑋  ∈  dom  ( ( 𝐹  ∘  𝐺 )  ∖   I  ) ) |