Metamath Proof Explorer


Theorem falimd

Description: The truth value F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Assertion falimd ( ( 𝜑 ∧ ⊥ ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 falim ( ⊥ → 𝜓 )
2 1 adantl ( ( 𝜑 ∧ ⊥ ) → 𝜓 )