Metamath Proof Explorer


Theorem festinoALT

Description: Alternate proof of festino , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses festino.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
festino.min 𝑥 ( 𝜒𝜓 )
Assertion festinoALT 𝑥 ( 𝜒 ∧ ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 festino.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
2 festino.min 𝑥 ( 𝜒𝜓 )
3 1 spi ( 𝜑 → ¬ 𝜓 )
4 3 con2i ( 𝜓 → ¬ 𝜑 )
5 4 anim2i ( ( 𝜒𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) )
6 2 5 eximii 𝑥 ( 𝜒 ∧ ¬ 𝜑 )