Metamath Proof Explorer


Theorem festino

Description: "Festino", one of the syllogisms of Aristotelian logic. No ph is ps , and some ch is ps , therefore some ch is not ph . In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses festino.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
festino.min 𝑥 ( 𝜒𝜓 )
Assertion festino 𝑥 ( 𝜒 ∧ ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 festino.maj 𝑥 ( 𝜑 → ¬ 𝜓 )
2 festino.min 𝑥 ( 𝜒𝜓 )
3 con2 ( ( 𝜑 → ¬ 𝜓 ) → ( 𝜓 → ¬ 𝜑 ) )
4 3 anim2d ( ( 𝜑 → ¬ 𝜓 ) → ( ( 𝜒𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) )
5 4 alimi ( ∀ 𝑥 ( 𝜑 → ¬ 𝜓 ) → ∀ 𝑥 ( ( 𝜒𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) )
6 1 5 ax-mp 𝑥 ( ( 𝜒𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) )
7 exim ( ∀ 𝑥 ( ( 𝜒𝜓 ) → ( 𝜒 ∧ ¬ 𝜑 ) ) → ( ∃ 𝑥 ( 𝜒𝜓 ) → ∃ 𝑥 ( 𝜒 ∧ ¬ 𝜑 ) ) )
8 6 2 7 mp2 𝑥 ( 𝜒 ∧ ¬ 𝜑 )