Metamath Proof Explorer


Theorem festino

Description: "Festino", one of the syllogisms of Aristotelian logic. No ph is ps , and some ch is ps , therefore some ch is not ph . In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses festino.maj
|- A. x ( ph -> -. ps )
festino.min
|- E. x ( ch /\ ps )
Assertion festino
|- E. x ( ch /\ -. ph )

Proof

Step Hyp Ref Expression
1 festino.maj
 |-  A. x ( ph -> -. ps )
2 festino.min
 |-  E. x ( ch /\ ps )
3 con2
 |-  ( ( ph -> -. ps ) -> ( ps -> -. ph ) )
4 3 anim2d
 |-  ( ( ph -> -. ps ) -> ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) )
5 4 alimi
 |-  ( A. x ( ph -> -. ps ) -> A. x ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) )
6 1 5 ax-mp
 |-  A. x ( ( ch /\ ps ) -> ( ch /\ -. ph ) )
7 exim
 |-  ( A. x ( ( ch /\ ps ) -> ( ch /\ -. ph ) ) -> ( E. x ( ch /\ ps ) -> E. x ( ch /\ -. ph ) ) )
8 6 2 7 mp2
 |-  E. x ( ch /\ -. ph )