Metamath Proof Explorer


Theorem fexafv2ex

Description: The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion fexafv2ex ( 𝐹𝑉 → ( 𝐹 '''' 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 rnexg ( 𝐹𝑉 → ran 𝐹 ∈ V )
2 afv2ex ( ran 𝐹 ∈ V → ( 𝐹 '''' 𝐴 ) ∈ V )
3 1 2 syl ( 𝐹𝑉 → ( 𝐹 '''' 𝐴 ) ∈ V )