Metamath Proof Explorer


Theorem fexafv2ex

Description: The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion fexafv2ex F V F '''' A V

Proof

Step Hyp Ref Expression
1 rnexg F V ran F V
2 afv2ex ran F V F '''' A V
3 1 2 syl F V F '''' A V