Metamath Proof Explorer


Theorem afv2ex

Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion afv2ex ranFVF''''AV

Proof

Step Hyp Ref Expression
1 df-afv2 F''''A=ifFdefAtAιx|AFx𝒫ranF
2 iotaex ιx|AFxV
3 2 a1i ranFVιx|AFxV
4 uniexg ranFVranFV
5 4 pwexd ranFV𝒫ranFV
6 3 5 ifcld ranFVifFdefAtAιx|AFx𝒫ranFV
7 1 6 eqeltrid ranFVF''''AV