Metamath Proof Explorer


Theorem afv2ex

Description: The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion afv2ex
|- ( ran F e. V -> ( F '''' A ) e. _V )

Proof

Step Hyp Ref Expression
1 df-afv2
 |-  ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F )
2 iotaex
 |-  ( iota x A F x ) e. _V
3 2 a1i
 |-  ( ran F e. V -> ( iota x A F x ) e. _V )
4 uniexg
 |-  ( ran F e. V -> U. ran F e. _V )
5 4 pwexd
 |-  ( ran F e. V -> ~P U. ran F e. _V )
6 3 5 ifcld
 |-  ( ran F e. V -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) e. _V )
7 1 6 eqeltrid
 |-  ( ran F e. V -> ( F '''' A ) e. _V )