| Step |
Hyp |
Ref |
Expression |
| 1 |
|
afv2eq12d.1 |
|- ( ph -> F = G ) |
| 2 |
|
afv2eq12d.2 |
|- ( ph -> A = B ) |
| 3 |
1 2
|
dfateq12d |
|- ( ph -> ( F defAt A <-> G defAt B ) ) |
| 4 |
|
eqidd |
|- ( ph -> x = x ) |
| 5 |
2 1 4
|
breq123d |
|- ( ph -> ( A F x <-> B G x ) ) |
| 6 |
5
|
iotabidv |
|- ( ph -> ( iota x A F x ) = ( iota x B G x ) ) |
| 7 |
1
|
rneqd |
|- ( ph -> ran F = ran G ) |
| 8 |
7
|
unieqd |
|- ( ph -> U. ran F = U. ran G ) |
| 9 |
8
|
pweqd |
|- ( ph -> ~P U. ran F = ~P U. ran G ) |
| 10 |
3 6 9
|
ifbieq12d |
|- ( ph -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = if ( G defAt B , ( iota x B G x ) , ~P U. ran G ) ) |
| 11 |
|
df-afv2 |
|- ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) |
| 12 |
|
df-afv2 |
|- ( G '''' B ) = if ( G defAt B , ( iota x B G x ) , ~P U. ran G ) |
| 13 |
10 11 12
|
3eqtr4g |
|- ( ph -> ( F '''' A ) = ( G '''' B ) ) |