Metamath Proof Explorer


Theorem afv2eq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by AV, 4-Sep-2022)

Ref Expression
Hypotheses afv2eq12d.1
|- ( ph -> F = G )
afv2eq12d.2
|- ( ph -> A = B )
Assertion afv2eq12d
|- ( ph -> ( F '''' A ) = ( G '''' B ) )

Proof

Step Hyp Ref Expression
1 afv2eq12d.1
 |-  ( ph -> F = G )
2 afv2eq12d.2
 |-  ( ph -> A = B )
3 1 2 dfateq12d
 |-  ( ph -> ( F defAt A <-> G defAt B ) )
4 eqidd
 |-  ( ph -> x = x )
5 2 1 4 breq123d
 |-  ( ph -> ( A F x <-> B G x ) )
6 5 iotabidv
 |-  ( ph -> ( iota x A F x ) = ( iota x B G x ) )
7 1 rneqd
 |-  ( ph -> ran F = ran G )
8 7 unieqd
 |-  ( ph -> U. ran F = U. ran G )
9 8 pweqd
 |-  ( ph -> ~P U. ran F = ~P U. ran G )
10 3 6 9 ifbieq12d
 |-  ( ph -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = if ( G defAt B , ( iota x B G x ) , ~P U. ran G ) )
11 df-afv2
 |-  ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F )
12 df-afv2
 |-  ( G '''' B ) = if ( G defAt B , ( iota x B G x ) , ~P U. ran G )
13 10 11 12 3eqtr4g
 |-  ( ph -> ( F '''' A ) = ( G '''' B ) )