Step |
Hyp |
Ref |
Expression |
1 |
|
afv2eq12d.1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
2 |
|
afv2eq12d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
1 2
|
dfateq12d |
⊢ ( 𝜑 → ( 𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵 ) ) |
4 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
5 |
2 1 4
|
breq123d |
⊢ ( 𝜑 → ( 𝐴 𝐹 𝑥 ↔ 𝐵 𝐺 𝑥 ) ) |
6 |
5
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( ℩ 𝑥 𝐵 𝐺 𝑥 ) ) |
7 |
1
|
rneqd |
⊢ ( 𝜑 → ran 𝐹 = ran 𝐺 ) |
8 |
7
|
unieqd |
⊢ ( 𝜑 → ∪ ran 𝐹 = ∪ ran 𝐺 ) |
9 |
8
|
pweqd |
⊢ ( 𝜑 → 𝒫 ∪ ran 𝐹 = 𝒫 ∪ ran 𝐺 ) |
10 |
3 6 9
|
ifbieq12d |
⊢ ( 𝜑 → if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) = if ( 𝐺 defAt 𝐵 , ( ℩ 𝑥 𝐵 𝐺 𝑥 ) , 𝒫 ∪ ran 𝐺 ) ) |
11 |
|
df-afv2 |
⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) |
12 |
|
df-afv2 |
⊢ ( 𝐺 '''' 𝐵 ) = if ( 𝐺 defAt 𝐵 , ( ℩ 𝑥 𝐵 𝐺 𝑥 ) , 𝒫 ∪ ran 𝐺 ) |
13 |
10 11 12
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 '''' 𝐴 ) = ( 𝐺 '''' 𝐵 ) ) |