Metamath Proof Explorer


Theorem afv2eq1

Description: Equality theorem for function value, analogous to fveq1 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion afv2eq1
|- ( F = G -> ( F '''' A ) = ( G '''' A ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( F = G -> F = G )
2 eqidd
 |-  ( F = G -> A = A )
3 1 2 afv2eq12d
 |-  ( F = G -> ( F '''' A ) = ( G '''' A ) )