Metamath Proof Explorer


Theorem afv2eq1

Description: Equality theorem for function value, analogous to fveq1 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion afv2eq1 F = G F '''' A = G '''' A

Proof

Step Hyp Ref Expression
1 id F = G F = G
2 eqidd F = G A = A
3 1 2 afv2eq12d F = G F '''' A = G '''' A