Metamath Proof Explorer


Theorem afv2eq2

Description: Equality theorem for function value, analogous to fveq2 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion afv2eq2 A=BF''''A=F''''B

Proof

Step Hyp Ref Expression
1 eqidd A=BF=F
2 id A=BA=B
3 1 2 afv2eq12d A=BF''''A=F''''B