Metamath Proof Explorer


Theorem nfafv2

Description: Bound-variable hypothesis builder for function value, analogous to nffv . To prove a deduction version of this analogous to nffvd is not easily possible because a deduction version of nfdfat cannot be shown easily. (Contributed by AV, 4-Sep-2022)

Ref Expression
Hypotheses nfafv2.1 _xF
nfafv2.2 _xA
Assertion nfafv2 _xF''''A

Proof

Step Hyp Ref Expression
1 nfafv2.1 _xF
2 nfafv2.2 _xA
3 df-afv2 F''''A=ifFdefAtAιy|AFy𝒫ranF
4 1 2 nfdfat xFdefAtA
5 nfcv _xy
6 2 1 5 nfbr xAFy
7 6 nfiotaw _xιy|AFy
8 1 nfrn _xranF
9 8 nfuni _xranF
10 9 nfpw _x𝒫ranF
11 4 7 10 nfif _xifFdefAtAιy|AFy𝒫ranF
12 3 11 nfcxfr _xF''''A