Metamath Proof Explorer


Theorem nfafv2

Description: Bound-variable hypothesis builder for function value, analogous to nffv . To prove a deduction version of this analogous to nffvd is not easily possible because a deduction version of nfdfat cannot be shown easily. (Contributed by AV, 4-Sep-2022)

Ref Expression
Hypotheses nfafv2.1 _ x F
nfafv2.2 _ x A
Assertion nfafv2 _ x F '''' A

Proof

Step Hyp Ref Expression
1 nfafv2.1 _ x F
2 nfafv2.2 _ x A
3 df-afv2 F '''' A = if F defAt A ι y | A F y 𝒫 ran F
4 1 2 nfdfat x F defAt A
5 nfcv _ x y
6 2 1 5 nfbr x A F y
7 6 nfiotaw _ x ι y | A F y
8 1 nfrn _ x ran F
9 8 nfuni _ x ran F
10 9 nfpw _ x 𝒫 ran F
11 4 7 10 nfif _ x if F defAt A ι y | A F y 𝒫 ran F
12 3 11 nfcxfr _ x F '''' A