Metamath Proof Explorer


Theorem csbafv212g

Description: Move class substitution in and out of a function value, analogous to csbfv12 , with a direct proof proposed by Mario Carneiro, analogous to csbov123 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion csbafv212g AVA/xF''''B=A/xF''''A/xB

Proof

Step Hyp Ref Expression
1 csbeq1 y=Ay/xF''''B=A/xF''''B
2 csbeq1 y=Ay/xF=A/xF
3 csbeq1 y=Ay/xB=A/xB
4 2 3 afv2eq12d y=Ay/xF''''y/xB=A/xF''''A/xB
5 1 4 eqeq12d y=Ay/xF''''B=y/xF''''y/xBA/xF''''B=A/xF''''A/xB
6 vex yV
7 nfcsb1v _xy/xF
8 nfcsb1v _xy/xB
9 7 8 nfafv2 _xy/xF''''y/xB
10 csbeq1a x=yF=y/xF
11 csbeq1a x=yB=y/xB
12 10 11 afv2eq12d x=yF''''B=y/xF''''y/xB
13 6 9 12 csbief y/xF''''B=y/xF''''y/xB
14 5 13 vtoclg AVA/xF''''B=A/xF''''A/xB