Metamath Proof Explorer


Theorem csbafv212g

Description: Move class substitution in and out of a function value, analogous to csbfv12 , with a direct proof proposed by Mario Carneiro, analogous to csbov123 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion csbafv212g A V A / x F '''' B = A / x F '''' A / x B

Proof

Step Hyp Ref Expression
1 csbeq1 y = A y / x F '''' B = A / x F '''' B
2 csbeq1 y = A y / x F = A / x F
3 csbeq1 y = A y / x B = A / x B
4 2 3 afv2eq12d y = A y / x F '''' y / x B = A / x F '''' A / x B
5 1 4 eqeq12d y = A y / x F '''' B = y / x F '''' y / x B A / x F '''' B = A / x F '''' A / x B
6 vex y V
7 nfcsb1v _ x y / x F
8 nfcsb1v _ x y / x B
9 7 8 nfafv2 _ x y / x F '''' y / x B
10 csbeq1a x = y F = y / x F
11 csbeq1a x = y B = y / x B
12 10 11 afv2eq12d x = y F '''' B = y / x F '''' y / x B
13 6 9 12 csbief y / x F '''' B = y / x F '''' y / x B
14 5 13 vtoclg A V A / x F '''' B = A / x F '''' A / x B