Metamath Proof Explorer


Theorem csbafv212g

Description: Move class substitution in and out of a function value, analogous to csbfv12 , with a direct proof proposed by Mario Carneiro, analogous to csbov123 . (Contributed by AV, 4-Sep-2022)

Ref Expression
Assertion csbafv212g ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐹 '''' 𝐵 ) = ( 𝐴 / 𝑥 𝐹 '''' 𝐴 / 𝑥 𝐵 ) )

Proof

Step Hyp Ref Expression
1 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 ( 𝐹 '''' 𝐵 ) = 𝐴 / 𝑥 ( 𝐹 '''' 𝐵 ) )
2 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐹 = 𝐴 / 𝑥 𝐹 )
3 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
4 2 3 afv2eq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 𝐹 '''' 𝑦 / 𝑥 𝐵 ) = ( 𝐴 / 𝑥 𝐹 '''' 𝐴 / 𝑥 𝐵 ) )
5 1 4 eqeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 ( 𝐹 '''' 𝐵 ) = ( 𝑦 / 𝑥 𝐹 '''' 𝑦 / 𝑥 𝐵 ) ↔ 𝐴 / 𝑥 ( 𝐹 '''' 𝐵 ) = ( 𝐴 / 𝑥 𝐹 '''' 𝐴 / 𝑥 𝐵 ) ) )
6 vex 𝑦 ∈ V
7 nfcsb1v 𝑥 𝑦 / 𝑥 𝐹
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
9 7 8 nfafv2 𝑥 ( 𝑦 / 𝑥 𝐹 '''' 𝑦 / 𝑥 𝐵 )
10 csbeq1a ( 𝑥 = 𝑦𝐹 = 𝑦 / 𝑥 𝐹 )
11 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
12 10 11 afv2eq12d ( 𝑥 = 𝑦 → ( 𝐹 '''' 𝐵 ) = ( 𝑦 / 𝑥 𝐹 '''' 𝑦 / 𝑥 𝐵 ) )
13 6 9 12 csbief 𝑦 / 𝑥 ( 𝐹 '''' 𝐵 ) = ( 𝑦 / 𝑥 𝐹 '''' 𝑦 / 𝑥 𝐵 )
14 5 13 vtoclg ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐹 '''' 𝐵 ) = ( 𝐴 / 𝑥 𝐹 '''' 𝐴 / 𝑥 𝐵 ) )