Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ ( F '''' B ) = [_ A / x ]_ ( F '''' B ) ) |
2 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ F = [_ A / x ]_ F ) |
3 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
4 |
2 3
|
afv2eq12d |
|- ( y = A -> ( [_ y / x ]_ F '''' [_ y / x ]_ B ) = ( [_ A / x ]_ F '''' [_ A / x ]_ B ) ) |
5 |
1 4
|
eqeq12d |
|- ( y = A -> ( [_ y / x ]_ ( F '''' B ) = ( [_ y / x ]_ F '''' [_ y / x ]_ B ) <-> [_ A / x ]_ ( F '''' B ) = ( [_ A / x ]_ F '''' [_ A / x ]_ B ) ) ) |
6 |
|
vex |
|- y e. _V |
7 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ F |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
9 |
7 8
|
nfafv2 |
|- F/_ x ( [_ y / x ]_ F '''' [_ y / x ]_ B ) |
10 |
|
csbeq1a |
|- ( x = y -> F = [_ y / x ]_ F ) |
11 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
12 |
10 11
|
afv2eq12d |
|- ( x = y -> ( F '''' B ) = ( [_ y / x ]_ F '''' [_ y / x ]_ B ) ) |
13 |
6 9 12
|
csbief |
|- [_ y / x ]_ ( F '''' B ) = ( [_ y / x ]_ F '''' [_ y / x ]_ B ) |
14 |
5 13
|
vtoclg |
|- ( A e. V -> [_ A / x ]_ ( F '''' B ) = ( [_ A / x ]_ F '''' [_ A / x ]_ B ) ) |