Metamath Proof Explorer


Theorem csbfv12

Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbfv12 A/xFB=A/xFA/xB

Proof

Step Hyp Ref Expression
1 csbiota A/xιy|BFy=ιy|[˙A/x]˙BFy
2 sbcbr123 [˙A/x]˙BFyA/xBA/xFA/xy
3 csbconstg AVA/xy=y
4 3 breq2d AVA/xBA/xFA/xyA/xBA/xFy
5 2 4 bitrid AV[˙A/x]˙BFyA/xBA/xFy
6 5 iotabidv AVιy|[˙A/x]˙BFy=ιy|A/xBA/xFy
7 1 6 eqtrid AVA/xιy|BFy=ιy|A/xBA/xFy
8 df-fv FB=ιy|BFy
9 8 csbeq2i A/xFB=A/xιy|BFy
10 df-fv A/xFA/xB=ιy|A/xBA/xFy
11 7 9 10 3eqtr4g AVA/xFB=A/xFA/xB
12 csbprc ¬AVA/xFB=
13 csbprc ¬AVA/xF=
14 13 fveq1d ¬AVA/xFA/xB=A/xB
15 0fv A/xB=
16 14 15 eqtr2di ¬AV=A/xFA/xB
17 12 16 eqtrd ¬AVA/xFB=A/xFA/xB
18 11 17 pm2.61i A/xFB=A/xFA/xB