Metamath Proof Explorer


Theorem csbiota

Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbiota A/xιy|φ=ιy|[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 csbeq1 z=Az/xιy|φ=A/xιy|φ
2 dfsbcq2 z=Azxφ[˙A/x]˙φ
3 2 iotabidv z=Aιy|zxφ=ιy|[˙A/x]˙φ
4 1 3 eqeq12d z=Az/xιy|φ=ιy|zxφA/xιy|φ=ιy|[˙A/x]˙φ
5 vex zV
6 nfs1v xzxφ
7 6 nfiotaw _xιy|zxφ
8 sbequ12 x=zφzxφ
9 8 iotabidv x=zιy|φ=ιy|zxφ
10 5 7 9 csbief z/xιy|φ=ιy|zxφ
11 4 10 vtoclg AVA/xιy|φ=ιy|[˙A/x]˙φ
12 csbprc ¬AVA/xιy|φ=
13 sbcex [˙A/x]˙φAV
14 13 con3i ¬AV¬[˙A/x]˙φ
15 14 nexdv ¬AV¬y[˙A/x]˙φ
16 euex ∃!y[˙A/x]˙φy[˙A/x]˙φ
17 16 con3i ¬y[˙A/x]˙φ¬∃!y[˙A/x]˙φ
18 iotanul ¬∃!y[˙A/x]˙φιy|[˙A/x]˙φ=
19 15 17 18 3syl ¬AVιy|[˙A/x]˙φ=
20 12 19 eqtr4d ¬AVA/xιy|φ=ιy|[˙A/x]˙φ
21 11 20 pm2.61i A/xιy|φ=ιy|[˙A/x]˙φ