| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 | ⊢ ( 𝑧  =  𝐴  →  ⦋ 𝑧  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 ) ) | 
						
							| 2 |  | dfsbcq2 | ⊢ ( 𝑧  =  𝐴  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 3 | 2 | iotabidv | ⊢ ( 𝑧  =  𝐴  →  ( ℩ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 )  =  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 4 | 1 3 | eqeq12d | ⊢ ( 𝑧  =  𝐴  →  ( ⦋ 𝑧  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 5 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 6 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 7 | 6 | nfiotaw | ⊢ Ⅎ 𝑥 ( ℩ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 8 |  | sbequ12 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 9 | 8 | iotabidv | ⊢ ( 𝑥  =  𝑧  →  ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 10 | 5 7 9 | csbief | ⊢ ⦋ 𝑧  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 11 | 4 10 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ∅ ) | 
						
							| 13 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) | 
						
							| 14 | 13 | con3i | ⊢ ( ¬  𝐴  ∈  V  →  ¬  [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 15 | 14 | nexdv | ⊢ ( ¬  𝐴  ∈  V  →  ¬  ∃ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 16 |  | euex | ⊢ ( ∃! 𝑦 [ 𝐴  /  𝑥 ] 𝜑  →  ∃ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 17 | 16 | con3i | ⊢ ( ¬  ∃ 𝑦 [ 𝐴  /  𝑥 ] 𝜑  →  ¬  ∃! 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 18 |  | iotanul | ⊢ ( ¬  ∃! 𝑦 [ 𝐴  /  𝑥 ] 𝜑  →  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 )  =  ∅ ) | 
						
							| 19 | 15 17 18 | 3syl | ⊢ ( ¬  𝐴  ∈  V  →  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 )  =  ∅ ) | 
						
							| 20 | 12 19 | eqtr4d | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 21 | 11 20 | pm2.61i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( ℩ 𝑦 𝜑 )  =  ( ℩ 𝑦 [ 𝐴  /  𝑥 ] 𝜑 ) |