| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 |  |-  ( z = A -> [_ z / x ]_ ( iota y ph ) = [_ A / x ]_ ( iota y ph ) ) | 
						
							| 2 |  | dfsbcq2 |  |-  ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) | 
						
							| 3 | 2 | iotabidv |  |-  ( z = A -> ( iota y [ z / x ] ph ) = ( iota y [. A / x ]. ph ) ) | 
						
							| 4 | 1 3 | eqeq12d |  |-  ( z = A -> ( [_ z / x ]_ ( iota y ph ) = ( iota y [ z / x ] ph ) <-> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) ) | 
						
							| 5 |  | vex |  |-  z e. _V | 
						
							| 6 |  | nfs1v |  |-  F/ x [ z / x ] ph | 
						
							| 7 | 6 | nfiotaw |  |-  F/_ x ( iota y [ z / x ] ph ) | 
						
							| 8 |  | sbequ12 |  |-  ( x = z -> ( ph <-> [ z / x ] ph ) ) | 
						
							| 9 | 8 | iotabidv |  |-  ( x = z -> ( iota y ph ) = ( iota y [ z / x ] ph ) ) | 
						
							| 10 | 5 7 9 | csbief |  |-  [_ z / x ]_ ( iota y ph ) = ( iota y [ z / x ] ph ) | 
						
							| 11 | 4 10 | vtoclg |  |-  ( A e. _V -> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) | 
						
							| 12 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ ( iota y ph ) = (/) ) | 
						
							| 13 |  | sbcex |  |-  ( [. A / x ]. ph -> A e. _V ) | 
						
							| 14 | 13 | con3i |  |-  ( -. A e. _V -> -. [. A / x ]. ph ) | 
						
							| 15 | 14 | nexdv |  |-  ( -. A e. _V -> -. E. y [. A / x ]. ph ) | 
						
							| 16 |  | euex |  |-  ( E! y [. A / x ]. ph -> E. y [. A / x ]. ph ) | 
						
							| 17 | 16 | con3i |  |-  ( -. E. y [. A / x ]. ph -> -. E! y [. A / x ]. ph ) | 
						
							| 18 |  | iotanul |  |-  ( -. E! y [. A / x ]. ph -> ( iota y [. A / x ]. ph ) = (/) ) | 
						
							| 19 | 15 17 18 | 3syl |  |-  ( -. A e. _V -> ( iota y [. A / x ]. ph ) = (/) ) | 
						
							| 20 | 12 19 | eqtr4d |  |-  ( -. A e. _V -> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) | 
						
							| 21 | 11 20 | pm2.61i |  |-  [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) |