Metamath Proof Explorer


Theorem nfiotaw

Description: Bound-variable hypothesis builder for the iota class. Version of nfiota with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Aug-2011) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypothesis nfiotaw.1
|- F/ x ph
Assertion nfiotaw
|- F/_ x ( iota y ph )

Proof

Step Hyp Ref Expression
1 nfiotaw.1
 |-  F/ x ph
2 nftru
 |-  F/ y T.
3 1 a1i
 |-  ( T. -> F/ x ph )
4 2 3 nfiotadw
 |-  ( T. -> F/_ x ( iota y ph ) )
5 4 mptru
 |-  F/_ x ( iota y ph )