| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfiotad.1 |  |-  F/ y ph | 
						
							| 2 |  | nfiotad.2 |  |-  ( ph -> F/ x ps ) | 
						
							| 3 |  | dfiota2 |  |-  ( iota y ps ) = U. { z | A. y ( ps <-> y = z ) } | 
						
							| 4 |  | nfv |  |-  F/ z ph | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x ps ) | 
						
							| 6 |  | nfeqf1 |  |-  ( -. A. x x = y -> F/ x y = z ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x y = z ) | 
						
							| 8 | 5 7 | nfbid |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x ( ps <-> y = z ) ) | 
						
							| 9 | 1 8 | nfald2 |  |-  ( ph -> F/ x A. y ( ps <-> y = z ) ) | 
						
							| 10 | 4 9 | nfabd |  |-  ( ph -> F/_ x { z | A. y ( ps <-> y = z ) } ) | 
						
							| 11 | 10 | nfunid |  |-  ( ph -> F/_ x U. { z | A. y ( ps <-> y = z ) } ) | 
						
							| 12 | 3 11 | nfcxfrd |  |-  ( ph -> F/_ x ( iota y ps ) ) |